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Abstract. We define a modular multi-concept extension of the lexicographic clo-

sure semantics for defeasible description logics with typicality. The idea is that of

distributing the defeasible properties of concepts into different modules, accord-

ing to their subject, and of defining a notion of preference for each module based

on the lexicographic closure semantics. The preferential semantics of the knowl-

edge base can then be defined as a combination of the preferences of the single

modules. The range of possibilities, from fine grained to coarse grained modules,

provides a spectrum of alternative semantics.

1 Introduction

Kraus, Lehmann and Magidor’s preferential logics for non-monotonic reasoning [41,

42], have been extended to description logics, to deal with inheritance with exceptions

in ontologies, allowing for non-strict forms of inclusions, called typicality or defeasible

inclusions, with different preferential and ranked semantics [29, 17] as well as differ-

ent closure constructions such as the rational closure [20, 19, 33, 32], the lexicographic

closure [21], the relevant closure [18], and MP-closure [37].

In this paper we define a modular multi-concept extension of the lexicographic clo-

sure for reasoning about exceptions in ontologies. The idea is very simple: different

modules can be defined starting from a defeasible knowledge base, containing a set

D of typicality inclusions (or defeasible inclusions) describing the prototypical prop-

erties of classes in the knowledge base. We will represent such defeasible inclusions

as T(C) ⊑ D [29], meaning that “typical C’s are D’s” or “normally C’s are D’s”,

corresponding to conditionals C |∼ D in KLM framework.

A set of modules m1, . . . ,mn is introduced, each one concerning a subject, and

defeasible inclusions belong to a module if they are related with its subject. By subject,

here, we mean any concept of the knowledge base. Module mi with subject Ci does

not need to contain just typicality inclusions of the form T(Ci) ⊑ D, but all defeasible

inclusions in D which are concerned with subject Ci are admitted in mi. We call a

collection of such modules a modular multi-concept knowledge base.

This modularization of the defeasible part of the knowledge base does not define

a partition of the set D of defeasible inclusions, as an inclusion may belong to more

than one module. For instance, the typical properties of employed students are relevant

both for the module with subject Student and for the module with subject Employee .
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The granularity of modularization has to be chosen by the knowledge engineer who can

fix how large or narrow is the scope of a module, and how many modules are to be

included in the knowledge base (for instance, whether the properties of employees and

students are to be defined in the same module with subject Person or in two different

modules). At one extreme, all the defeasible inclusions in D can be put together in a

module associated with subject ⊤ (Thing). At the other extreme, which has been studied

in [36], a module mi is a defeasible TBox containing only the defeasible inclusions of

the form T(Cj) ⊑ D for some concept Ci. In this paper we remove this restriction con-

sidering general modules, containing arbitrary sets of defeasible inclusions, intuitively

pertaining some subject.

In [36], following Gerard Brewka’s framework of Basic Preference Descriptions

for ranked knowledge bases [14], we have assumed that a specification of the relative

importance of typicality inclusions for a concept Ci is given by assigning ranks to typ-

icality inclusions. However, for a large module, a specification by hand of the ranking

of the defeasible inclusions in the module would be awkward. In particular, a module

may include all properties of a class as well as properties of its exceptional subclasses

(for instance, the typical properties of penguins, ostriches, etc. might all be included

in a module with subject Bird ). A natural choice is then to consider, for each mod-

ule, a lexicographic semantics which builds on the rational closure ranking to define a

preference ordering on domain elements. This preference relation corresponds, in the

propositional case, to the lexicographic order on worlds in Lehmann’s model theoretic

semantics of the lexicographic closure [43]. This semantics already accounts for the

specificity relations among concepts inside the module, as the lexicographic closure

deals with specificity, based on ranking of concepts computed by the rational closure of

the knowledge base.

Based on the ranked semantics of the single modules, a compositional (preferen-

tial) semantics of the knowledge base is defined by combining the multiple preference

relations into a single global preference relation <. This gives rise to a modular multi-

concept extension of Lehmann’s preference semantics for the lexicographic closure.

When there is a single module, containing all the typicality inclusions in the knowledge

base, the semantics collapses to a natural extension to DLs of Lehmann’s semantics,

which corresponds to Lehmann’s semantics for the fragment of ALC without universal

and existential restrictions.

We introduce a notion of entailment for modular multi-concept knowledge bases,

based on the proposed semantics, which satisfies the KLM properties of a preferential

consequence relation. This notion of entailment has good properties inherited from lexi-

cographic closure: it deals properly with irrelevance and specificity, and it is not subject

to the “blockage of property inheritance” problem, i.e., the problem that property inher-

itance from classes to subclasses is not guaranteed, which affects the rational closure

[45]. In addition, separating defeasible inclusions in different modules provides a sim-

ple solution to another problem of the rational closure and its refinements (including

the lexicographic closure), that was recognized by Geffner and Pearl [27], namely, that

“conflicts among defaults that should remain unresolved, are resolved anomalously”,

giving rise to too strong conclusions. The preferential (not necessarily ranked) nature
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of the global preference relation < provides a simple way out to this problem, when

defeasible inclusions are suitably separated in different modules.

2 Preliminaries: The description logics ALC and its extension

with typicality inclusions

Let NC be a set of concept names, NR a set of role names and NI a set of individual

names. The set of ALC concepts (or, simply, concepts) can be defined inductively as

follows:

– A ∈ NC , ⊤ and ⊥ are concepts;

– if C and D are concepts and R ∈ NR, then C ⊓ D,C ⊔ D,¬C, ∀R.C, ∃R.C are

concepts.

A knowledge base (KB) K is a pair (T ,A), where T is a TBox and A is an ABox.

The TBox T is a set of concept inclusions (or subsumptions) C ⊑ D, where C,D are

concepts. The ABox A is a set of assertions of the form C(a) and R(a, b) where C is a

concept, R ∈ NR, and a, b ∈ NI .

An ALC interpretation [2] is a pair I = 〈∆, ·I〉 where: ∆ is a domain—a set whose

elements are denoted by x, y, z, . . .—and ·I is an extension function that maps each

concept name C ∈ NC to a set CI ⊆ ∆, each role name R ∈ NR to a binary relation

RI ⊆ ∆ ×∆, and each individual name a ∈ NI to an element aI ∈ ∆. It is extended

to complex concepts as follows:

⊤I = ∆ ⊥I = ∅

(¬C)I = ∆\CI

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(∀R.C)I = {x ∈ ∆ | ∀y.(x, y) ∈ RI → y ∈ CI}

(∃R.C)I = {x ∈ ∆ | ∃y.(x, y) ∈ RI & y ∈ CI}.

The notion of satisfiability of a KB in an interpretation and the notion of entailment are

defined as follows:

Definition 1 (Satisfiability and entailment). Given anALC interpretation I = 〈∆, ·I〉:

- I satisfies an inclusion C ⊑ D if CI ⊆ DI ;

- I satisfies an assertion C(a) if aI ∈ CI ;

- I satisfies an assertion R(a, b) if (aI , bI) ∈ RI .

Given a KB K = (T ,A), an interpretation I satisfies T (resp., A) if I satisfies all

inclusions in T (resp., all assertions in A). I is an ALC model of K = (T ,A) if I

satisfies T and A.

Letting a query F to be either an inclusion C ⊑ D (where C and D are concepts)

or an assertion (C(a) or R(a, b)), F is entailed by K , written K |=ALC F , if for all

ALC models I =〈∆, ·I〉 of K , I satisfies F .
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Given a knowledge baseK , the subsumption problem is the problem of deciding whether

an inclusion C ⊑ D is entailed by K . The instance checking problem is the problem

of deciding whether an assertion C(a) is entailed by K . The concept satisfiability prob-

lem is the problem of deciding, for a concept C, whether C is consistent with K (i.e.,

whether there exists a model I of K , such that CI 6= ∅).

In the following we will refer to an extension of ALC with typicality inclusions, that

we will call ALC + T as in [29], and to the rational closure of ALC + T knowledge

bases (T ,A) [33, 32]. In addition to standard ALC inclusions C ⊑ D (called strict

inclusions in the following), in ALC+T the TBox T also contains typicality inclusions

of the form T(C) ⊑ D, where C and D are ALC concepts. Among all rational closure

constructions for ALC mentioned in the introduction, we will refer to the one in [33],

and to its minimal canonical model semantics. Let us recall the notions of preferential,

ranked and canonical model of a defeasible knowledge base (T ,A), that will be useful

in the following.

Definition 2 (Interpretations for ALC + T). A preferential interpretation N is any

structure 〈∆,<, ·I〉 where: ∆ is a domain; < is an irreflexive, transitive and well-

founded relation over ∆; ·I is a function that maps all concept names, role names and

individual names as defined above for ALC interpretations, and provides an interpre-

tation to all ALC concepts as above, and to typicality concepts as follows: (T(C))I =
min<(C

I), where min<(S) = {u : u ∈ S and ∄z ∈ S s.t. z < u}.

When relation < is required to be also modular (i.e., for all x, y, z ∈ ∆, if x < y then

x < z or z < y), N is called a ranked interpretation.

Preferential interpretations for description logics were first studied in [29], while ranked

interpretations (i.e., modular preferential interpretations) were first introduced for ALC
in [17].

A preferential (ranked) model of an ALC + T knowledge base K is a preferential

(ranked) ALC + T interpretation N = 〈∆,<, ·I〉 that satisfies all inclusions in K ,

where: a strict inclusion or an assertion is satisfied in N if it is satisfied in the ALC
model 〈∆, ·I〉, and a typicality inclusion T(C) ⊑ D is satisfied in N if (T(C))I ⊆ DI .

Preferential entailment in ALC +T is defined in the usual way: for a knowledge base

K and a query F (a strict or defeasible inclusion or an assertion), F is preferentially

entailed by K (K |=ALC+T F ) if F is satisfied in all preferential models of K .

A canonical model for K is a preferential (ranked) model containing, roughly speak-

ing, as many domain elements as consistent with the knowledge base specification K .

Given an ALC+T knowledge base K = (T ,A) and a query F , let us define SK as the

set of all ALC concepts (and subconcepts) occurring in K or in F , together with their

complements. We consider all the sets of concepts {C1, C2, . . . , Cn} ⊆ SK consistent

with K , i.e., s.t. K 6|=ALC+T C1 ⊓ C2 ⊓ · · · ⊓ Cn ⊑ ⊥.

Definition 3 (Canonical model). . A preferential model M =〈∆,<, I〉 of K is canon-

ical with respect to SK if it contains at least a domain element x ∈ ∆ s.t. x ∈
(C1 ⊓C2 ⊓ · · · ⊓Cn)

I , for each set {C1, C2, . . . , Cn} ⊆ SK consistent with K .

For finite, consistent ALC +T knowledge bases, existence of finite (ranked) canonical

models has been proved in [32] (Theorem 1). In the following, as we will only consider
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finite ALC+T knowledge bases, we can restrict our consideration to finite preferential

models.

3 Modular multi-concept knowledge bases

In this section we introduce a notion of a multi-concept knowledge base, starting from

a set of strict inclusions T , a set of assertions A, and a set of typicality inclusions D,

each one of the form T(C) ⊑ D, where C and D are ALC concepts.

Definition 4. A modular multi-concept knowledge base K is a tuple 〈T ,D,m1 , . . . ,

mk ,A, s〉, where T is an ALC TBox, D is a set of typicality inclusions, such that m1 ∪
. . . ∪mk = D, A is an ABox, and s is a function associating each module mi with a

concept, s(mi) = Ci, the subject of mi.

The idea is that each mi is a module defining the typical properties of the instances

of some concept Ci. The defeasible inclusions belonging to a module mi with sub-

ject Ci are the inclusions that intuitively pertain to Ci. We expect that all the typi-

cality inclusions T(C) ⊑ D, such that C is a subclass of Ci, belong to mi, but not

only. For instance, for a module mi with subject Ci = Bird , the typicality inclusion

T(Bird ⊓ Live at SouthPole) ⊑ Penguin , meaning that the birds living at the south

pole are normally penguins, is clearly to be included in mi. As penguins are birds, also

inclusion T(Penguin) ⊑ Black is to be included in mi, and, if T(Bird) ⊑ Flying-

Animal and T(FlyingAnimal) ⊑ BigWings are defeasible inclusions in the knowl-

edge base, they both may be relevant properties of birds to be included in mi. For this

reason we will not put restrictions on the typicality inclusions that can belong to a mod-

ule. We will see later that the semantic construction for a module mi will be able to

ignore the typicality inclusions which are not relevant for subject Ci and that there are

cases when not even the inclusions T(C) ⊑ D with C subsumed by Ci are admitted in

mi.

The modularization m1, . . . ,mk of the defeasible part D of the knowledge base

does not define a partition of D, as the same inclusion may belong to more than one

module mi. For instance, the typical properties of employed students are relevant for

both concept Student and concept Employee and should belong to their related mod-

ules (if any). Also, a granularity of modularization has to be chosen and, as we will see,

this choice may have an impact on the global semantics of the knowledge base. At one

extreme, all the defeasible inclusions in D are put together in the same module, e.g., the

module associated with concept⊤. At the other extreme, which has been studied in [36],

a module mi contains only the defeasible inclusions of the form T(Ci) ⊑ D, where Ci

is the subject of mi (and in this case, the inclusions T(C) ⊑ D with C subsumed by

Ci are not admitted in mi). In this regard, the framework proposed in this paper could

be seen as an extension of the proposal in [36] to allow coarser grained modules, while

here we do not allow for user-defined preferences among defaults.

Let us consider an example of multi-concept knowledge base.

Example 1. Let K be the knowledge base 〈T ,D,m1 ,m2 ,m3 ,A, s〉, where A = ∅, T
contains the strict inclusions:
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Employee ⊑ Adult

Adult ⊑ ∃has SSN .⊤
PhdStudent ⊑ Student

PhDStudent ⊑ Adult

Has no Scolarship ≡ ¬∃hasScolarship.⊤ PrimarySchoolStudent ⊑ Children

PrimarySchoolStudent ⊑ HasNoClasses Driver ⊑ Adult

Driver ⊑ ∃has DrivingLicence.⊤

and the defeasible inclusions in D are distributed in the modules m1,m2,m3 as follows.

Module m1 has subject Employee, and contains the defeasible inclusions:

(d1) T(Employee) ⊑ ¬Young
(d2) T(Employee) ⊑ ∃has boss .Employee

(d3) T(ForeignerEmployee) ⊑ ∃has Visa.⊤
(d4) T(Employee ⊓ Student) ⊑ Busy

(d5) T(Employee ⊓ Student) ⊑ ¬Young
Module m2 has subject Student, and contains the defeasible inclusions:

(d6) T(Student) ⊑ ∃has classes .⊤
(d7) T(Student) ⊑ Young

(d8) T(Student) ⊑ Has no Scolarship

(d9) T(HighSchoolStudent) ⊑ Teenager

(d10) T(PhDStudent) ⊑ ∃hasScolarship.Amount

(d11) T(PhDStudent) ⊑ Bright

(d4) T(Employee ⊓ Student) ⊑ Busy

(d5) T(Employee ⊓ Student) ⊑ ¬Young
Module m3 has subject V ehicle, and contains the defeasible inclusions:

(d12) T(Vehicle) ⊑ ∃has owner .Driver

(d13) T(Car) ⊑ ¬SportsCar
(d14) T(SportsCar) ⊑ RunFast

(d15) T(Truck) ⊑ Heavy

(d16) T(Bicycle) ⊑ ¬RunFast

Observe that, in previous example, (d4) and (d5) belong to both modules m1 and m2.

An additional module might be added containing the prototypical properties of Adults.

4 A lexicographic semantics of modular multi-concept knowledge

bases

In this section, we define a semantics of modular multi-concept knowledge bases, based

on Lehmann’s lexicographic closure semantics [43]. The idea is that, for each module

mi, a semantics can be defined using lexicographic closure semantics, with some minor

modification.

Given a modular multi-concept knowledge base K = 〈T ,D,m1 , . . . ,mk ,A, s〉,
we let rank(C ) be the rank of concept C in the rational closure ranking of the knowl-

edge base (T ∪ D,A), according to the rational closure construction in [33]. In the ra-

tional closure ranking, concepts with higher ranks are more specific than concepts with
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lower ranks. While we will not recall the rational closure construction, let us consider

again Example 1. In Example 1, the rational closure ranking assigns to concepts Adult ,

Employee , ForeignEmployee , Driver , Student , HighSchoolStudent , Primary -

SchoolStudent the rank 0, while to concepts PhDStudent and Employee ⊓ Student

the rank 1. In fact, PhDStudent are exceptional students, as they have a scholarship,

while employed students are exceptional students, as they are not young. Their rank

is higher than the rank of concept Student as they are exceptional subclasses of class

Student .

Based on the concept ranking, the rational closure assigns a rank to typicality in-

clusions: the rank of T(C) ⊑ D is equal to the rank of concept C. For each module

mi of a knowledge base K = 〈T ,D,m1 , . . . ,mk ,A, s〉, we aim to define a canonical

model, using the lexicographic order based on the rank of typicality inclusions in mi.

In the following we will assume that the knowledge base 〈T ∪D,A〉 is consistent in the

logic ALC +T, that is, it has a preferential model. This also guarantees the existence

of (finite) canonical models [32]. In the following, as the knowledge base K is finite,

we will restrict our consideration to finite preferential and ranked models.

Let us define the projection of the knowledge base K on module mi as the knowl-

edge base Ki = 〈T ∪mi,A〉. Ki is an ALC+T knowledge base. Hence a preferential

model Ni = 〈∆,<i, ·
I〉 of Ki is defined as in Section 2 (but now we use <i, instead of

<, for the preference relation in Ni, for i = 1, . . . , k).

In his seminal work on the lexicographic closure, Lehmann [43] defines a model

theoretic semantics of the lexicographic closure construction by introducing an order

relation among propositional models, considering which defaults are violated in each

model, and introducing a seriousness ordering ≺ among sets of violated defaults. For

two propositional models w and w′, w ≺ w′ (w is preferred to w′) is defined in [43] as

follows:

w ≺ w′ iff V (w) ≺ V (w′) (1)

w is preferred to w′ when the defaults V (w) violated by w are less serious than the de-

faults V (w′) violated by w′. As we will recall below, the seriousness ordering depends

on the number of defaults violated by w and by w′ for each rank.

In a similar way, in the following, we introduce a ranked relation <i on the domain

∆ of a model of Ki. Let us first define, for a preferential model Ni = 〈∆,<i, ·I〉 of Ki,

what it means that an element x ∈ ∆ violates a typicality inclusion T(C) ⊑ D in mi.

Definition 5. Given a module mi of K , with s(mi) = Ci, and a preferential model

Ni = 〈∆,<i, ·I〉 of Ki, an element x ∈ ∆ violates a typicality inclusion T(C) ⊑ D in

mi if x ∈ CI
i , x ∈ CI and x 6∈ DI .

Notice that, the set of typicality inclusions violated by a domain element x in a model

only depends on the interpretation ·I of ALC concepts, and on the defeasible inclusions

in mi. Furthermore, differently from the usual notion of violation in Lehmann’s seman-

tics, for a module mi with subject Ci, we do not consider the violations of domain

elements x 6∈ CI
i (i.e., the domain elements x which are not Ci-instances are assumed

not to violate any default in mi). Let Vi(x) be the set of the defeasible inclusions of mi

violated by domain element x, and let V h
i (x) be the set of all defeasible inclusions in

mi with rank h which are violated by domain element x.
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In order to compare alternative sets of defaults, in [43] the seriousness ordering ≺
among sets of defaults is defined by associating with each set of defaults D ⊆ K a tuple

of numbers 〈n0, n1, . . . , nr〉, where r is the order of K , i.e. the least finite i such that

there is no default with the finite rank r or rank higher than r (but there is at least one

default with rank r−1). The tuple is constructed considering the ranks of defaults in the

rational closure. n0 is the number of defaults in D with rank ∞ and, for 1 ≤ i ≤ k, ni

is the number of defaults in D with rank r−i (in particular, nr is the number of defaults

in D with rank 0). Lehmann defines the strict modular order ≺ among sets of defaults

from the natural lexicographic order over the tuples 〈n0, n1, . . . , nk〉. This order gives

preference to those sets of defaults containing a larger number of more specific defaults.

As we have seen from equation (1), ≺ is used by Lehmann to compare sets of violated

defaults and to prefer the propositional models whose violations are less serious.

We use the same criterion for comparing domain elements, introducing a serious-

ness ordering ≺i for each module mi. Considering that the defaults with infinite rank

must be satisfied by all domain elements, we will not need to consider their violation in

our definition (that is, we will not consider n0 in the following).

The set Vi(x) of defaults from modulemi which are violated by x, can be associated

with a tuple of numbers ti,x = 〈|V r−1

i (x)|, . . . , |V 0
i (x)|〉. Following Lehmann, we let

Vi(x) ≺i Vi(y) iff ti,x comes before ti,y in the natural lexicographic order on tuples

(restricted to the violations of defaults in mi), that is:

Vi(x) ≺i Vi(y) iff ∃l such that |V l
i (x)| < |V l

i (y)|

and, ∀h > l, |V h
i (x)| = |V h

i (y)|

Definition 6. A preferential model Ni = 〈∆,<i, ·I〉 of Ki = 〈T ∪mi,A〉, is a lexico-

graphic model of Ki if 〈∆, ·I〉 is an ALC model of 〈T ,A〉 and<i satisfies the following

condition:

x <i y iff Vi(x) ≺i Vi(y). (2)

Informally, <Cj
gives higher preference to domain elements violating less typicality

inclusions of mi with higher rank. In particular, all x, y 6∈ CI
i , x ∼Ci

y, i.e., all ¬Ci-

elements are assigned the same preference wrt <i, the least one, as they trivially satisfy

all the typicality properties in mi. As in Lehmann’s semantics, in a lexicographic model

Ni = 〈∆,<i, ·I〉 of Ki, the preference relation <i is a strict modular partial order, i.e.

an irreflexive, transitive and modular relation. As well-foundedness trivially holds for

finite interpretations, a lexicographic model Ni of Ki is a ranked model of Ki.

Proposition 1. A lexicographic model Ni = 〈∆,<i, ·I〉 of Ki = 〈T ∪ mi,A〉 is a

ranked model of Ki.

A multi-concept model for K can be defined as a multi-preference interpretation

with a preference relation <i for each module mi.

Definition 7 (Multi-concept interpretation). Let K = 〈T ,D,m1 , . . . ,mk ,A, s〉 be

a multi-concept knowledge base. A multi-concept interpretation M for K is a tuple

〈∆,<1, . . . , <k, ·I〉 such that, for all i = 1, . . . , k, 〈∆,<i, ·I〉 is a ranked ALC + T

interpretation, as defined in Section 2.
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Definition 8 (Multi-concept lexicographic model). Let K = 〈T ,D,m1 , . . . ,mk ,A, s〉
be a multi-concept knowledge base. A multi-concept lexicographic model M = 〈∆,<1

, . . . , <k, ·
I〉 of K is a multi-concept interpretation for K , such that, for all i = 1, . . . , k,

Ni = 〈∆,<i, ·I〉 is a lexicographic model of Ki = 〈T ∪mi,A〉.

A canonical multi-concept lexicographic model of K is multi-concept lexicographic

model of K such that ∆ and ·I are the domain and interpretation function of some

canonical preferential model of 〈T ∪ D,A〉, according to Definition 3.

Definition 9 (Canonical multi-concept lexicographic model). Given a multi-concept

knowledge base K = 〈T ,D,m1 , . . . ,mk ,A, s〉, a canonical multi-concept lexico-

graphic model of K , M = 〈∆,<1, . . . , <k, ·
I〉, is a multi-concept lexicographic model

of K such that there is a canonicalALC+T model 〈∆,<∗, ·I〉 of 〈T ∪D,A〉, for some

<∗.

Observe that, restricting to the propositional fragment of the language (which does

not allow universal and existential restrictions nor assertions), for a knowledge base K

without strict inclusions and with a single module m1, with subject ⊤, containing all

the typicality inclusions in K , the preference relation <1 corresponds to Lehmann’s

lexicographic closure semantics, as its definition is based on the set of all defeasible

inclusions in the knowledge base.

5 The combined lexicographic model of a KB

For multiple modules, each <i determines a ranked preference relation which can be

used to answer queries over module mi (i.e. queries whose subject is Ci). If we want

to evaluate the query T(C) ⊑ D (are all typical C elements also D elements?) in

module mi (assuming that C concerns subject Ci), we can answer the query using the

<i relation, by checking whether min<i
(CI) ⊆ DI . For instance, in Example 1, the

query “are all typical Phd students young?” can be evaluated in module m2. The answer

would be positive, as the property of students of being normally young is inherited

by PhD Student. The evaluation of a query in a specific module is something that is

considered in context-based formalisms, such as in the CKR framework [9], where

there is a language construct eval(X , c) for evaluating a concept (or role) X in context

c.

The lexicographic orders <i and <j (for i 6= j) do not need to agree. For instance,

in Example 1, for two domain elements x and y, we might have that x <1 y and

y <2 x, as x is more typical than y as an employee, but less typical than x as a student.

To answer a query T(C) ⊑ D, where C is a concept which is concerned with more

than one subject in the knowledge base (e.g., are typical employed students young?),

we need to combine the relations <i.

A simple way of combining the modular partial order relations <i is to use Pareto

combination. Let ≤i be defined as follows: x ≤i y iff y 6<i x. As <i is a modular partial

order,≤i is a total preorder. Given a canonical multi-concept lexicographic model M =
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〈∆,<1, . . . , <k, ·I〉 of K , we define a global preference relation < on ∆ as follows:

x < y iff (i) for some i = 1, . . . , k, x <i y and (∗)

(ii) for all j = 1, . . . , k, x ≤j y,

The resulting relation < is a partial order but, in general, modularity does not hold for

<.

Definition 10. Given a canonical multi-concept lexicographic model M = 〈∆,<1

, . . . , <k, ·I〉 of K , the combined lexicographic interpretation of M, is a triple MP =
〈∆,<, ·I〉, where < is the global preference relation defined by (*).

We call MP a combined lexicographic model of K (shortly, an mc
l -model of K).

Proposition 2. A combined lexicographic model MP of K is a preferential interpreta-

tion satisfying all the strict inclusions and assertions in K .

A combined lexicographic model MP of K is a preferential interpretation as those

defined for ALC +T in Definition 2 (and, in general, it is not a ranked interpretation).

However, preference relation < in MP is not an arbitrary irreflexive, transitive and

well-founded relation. It is obtained by first computing the lexicographic preference

relations <i for modules, and then by combining them into <. As MP satisfies all

strict inclusions and assertions in K but is not required to satisfy all typicality inclusions

T(C) ⊑ D in K , MP is not a preferential ALC+T model of K as defined in Section

2.

Consider a situation in which there are two concepts, Student and YoungPerson ,

that are very related in that students are normally young persons and young persons are

normally students (i.e., T(Student) ⊑ YoungPerson and T(YoungPerson) ⊑ Stu-

dent) and suppose there are two modules m1 and m2 such that s(m1) = Student and

s(m2) = YoungPerson . The two classes may have different (and even contradictory)

prototypical properties, for instance, normally students are quiet (e.g., when they are

in their classrooms), T(Student) ⊑ Quiet , but normally young persons are not quiet,

T(YoungPerson) ⊑ ¬Quiet . Considering the preference relations <1 and <2, associ-

ated with the two modules in a canonical multi-concept lexicographic model, we may

have that, for two young persons Bob and John, which are also students, bob <1 john

and john <2 bob, as Bob is quiet and John is not. Then, John and Bob are incompara-

ble in the global relation <. Both of them, depending on the other prototypical proper-

ties of students and young persons, might be minimal, among students, wrt the global

preference relation <. Hence, the set min<(Student
I ) is not necessarily a subset of

min<1
(Student I ). That is, typical students in the global relation may include instances

(e.g., john) which do not satisfy all the typicality inclusions for Student , as they are are

(globally) incomparable with the elements in min<1
(Student I ). This implies that the

notion of mc
l -entailment (defined below) cannot be stronger than preferential entailment

in Section 2. However, given the correspondence of mc
l -models with the lexicographic

closure in the case of a single module with subject ⊤, containing all the typicality inclu-

sions in D, mc
l -entailment can neither be weaker than preferential entailment.

In general, for a knowledge base K and a module mi, with s(mi) = Ci, the inclu-

sion min<(C
I
i ) ⊆ min<i

(C I
i ) may not hold and, for this reason, a combined lexico-
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graphic interpretation may fail to satisfy all typicality inclusions. In this respect, canon-

ical multi-concept lexicographic models are more liberal than KLM-style preferential

models for typicality logics [30], where all the typicality inclusions are required to be

satisfied and, in the previous example, min<(Student
I ) ⊆ Quiet I must hold for the

typicality inclusion to be satisfied. In fact, the knowledge base above is inconsistent in

the preferential semantics and has no preferential model: from T(Student) ⊑ Young-

Person and T(YoungPerson) ⊑ Student , it follows that T(Student) = T(Young-

Person) should hold in all preferential models of the knowledge base, which is impos-

sible given the conflicting typicality inclusions T(Student) ⊑ Quiet and T(Young-

Person) ⊑ ¬Quiet .

To require that all typicality inclusions in K are satisfied in MP, the notion of

mc
l -model of K can be strengthened as follows.

Definition 11. A T-compliant mc
l -model (or mc

lT-model) MP = 〈∆,<, ·I〉 of K is a

mc
l -model of K such that all the typicality inclusions in K are satisfied in MP, i.e., for

all T(C) ⊑ D ∈ D, min<(C
I) ⊆ DI .

Observe that, mc
lT-model MP = 〈∆,<, ·I〉 of K = 〈T ,D,m1 , . . . ,mk ,A, s〉 is

a KLM-style preferential model for the ALC + T knowledge base 〈T ∪ D,A〉, as

defined in Section 2. As a difference, the preference relation < in a mc
lT-model is

not an arbitrary irreflexive, transitive and well-founded relation, but is defined from the

lexicographic preference relations <i’s according to equation (*).

We define a notion of multi-concept lexicographic entailment (mc
l -entailment) in

the obvious way: a query F is mc
l -entailed by K (K |=mc

l
F ) if, for all mc

l -models

MP = 〈∆,<, ·I〉 of K , F is satisfied in MP. Notice that a query T(C) ⊑ D is

satisfied in MP when min<(C
I) ⊆ DI .

Similarly, a notion of mc
lT-entailment can be defined: K |=mc

l
T F if, for all mc

lT-

models MP = 〈∆,<, ·I〉 of K , F is satisfied in MP.

As, for any multi-concept knowledge base K , the set of mc
lT-models of K is a sub-

set of the set of mc
l -models of K , and there is some K for which the inclusion is proper

(see, for instance, the student and young person example above), mc
lT-entailment is

stronger than mc
l -entailment. It can be proved that both notions of entailment satisfy

the KLM postulates of preferential consequence relations, which can be reformulated

for a typicality logic, considering that typicality inclusions T(C) ⊑ D [29] stand for

conditionals C|∼D in KLM preferential logics [41, 42]. See also [8] for the formulation

of KLM postulates in the Propositional Typicality Logic (PTL).

In the following proposition, we let “T(C) ⊑ D” mean that T(C) ⊑ D is mc
l -

entailed from a given knowledge base K .

Proposition 3. mc
l -entailment satisfies the KLM postulates of preferential consequence

relations, namely:

(REFL) T(C) ⊑ C

(LLE) If A ≡ B and T(A) ⊑ C, then T(B) ⊑ C

(RW) If C ⊑ D and T(A) ⊑ C, then T(A) ⊑ D

(AND) If T(A) ⊑ C and T(A) ⊑ D, then T(A) ⊑ C ⊓D

(OR) If T(A) ⊑ C and T(B) ⊑ C, then T(A ⊔B) ⊑ C

(CM) If T(A) ⊑ D and T(A) ⊑ C, then T(A ⊓D) ⊑ C
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Stated differently, the set of the typicality inclusions T(C) ⊑ D that are mc
l -entailed

from a given knowledge base K is closed under conditions (REFL)-(CM) above. For

instance, (LLE) means that if A and B are equivalent concepts in ALC and T(A) ⊑ C

is mc
l -entailed from a given knowledge base K , than T(B) ⊑ C is also mc

l -entailed

from K; similarly for the other conditions (where inclusion C ⊑ D is entailed by K

in ALC). It can be proved that also mc
lT-entailment satisfies the KLM postulates of

preferential consequence relations.

It can be shown that both mc
l -entailment and mc

lT-entailment are not stronger than

Lehmann’s lexicographic closure in the propositional case. Let us consider again Exam-

ple 1.

Example 2. Let us add another module m4 with subject Citizen to the knowledge base

K , plus the following additional axioms in T :

Italian ⊑ Citizen French ⊑ Citizen

Canadian ⊑ Citizen

Module m4 has subject Citizen , and contains the defeasible inclusions:

(d17) T(Italian) ⊑ DriveFast

(d18) T(Italian) ⊑ HomeOwner

Suppose the following typicality inclusion is also added to module m2:

(d19) T(PhDStudent) ⊑ ¬HomeOwner

What can we conclude about typical Italian PhD students? We can see that neither the in-

clusion T(PhDStudent ⊓ Italian) ⊑ HomeOwner nor the inclusion T(PhDStudent

⊓Italian) ⊑ ¬HomeOwner are mc
l -entailed by K .

In fact, in all canonical multi-concept lexicographic models M = 〈∆,<1, . . . , <4

, ·I〉 of K , all elements in min<2
((PhDStudent ⊓ Italian)I) ( the minimal Italian

PhDStudent wrt <2), have scholarship, are bright, are not home owners (which are

typical properties of PhD students), have classes and are young (which are properties

of students not overridden for PhD students).

On the other end, all elements in min<4
((PhDStudent ⊓Italian)I ) (i.e., the min-

imal Italian PhDStudent wrt <4) have the properties that they drive fast and are home

owners. As <2-minimal elements and <4-minimal PhDStudent ⊓Italian-elements

are incomparable wrt <, the <-minimal Italian PhD students will include them all.

Hence,min<((PhDStudent ⊓ Italian)I ) 6⊆ HomeOwner I andmin<((PhDStudent⊓
Italian)I ) 6⊆ (¬HomeOwner)I .

The home owner example is a reformulation of the example used by Geffner and Pearl

to show that the rational closure of conditional knowledge bases sometimes gives too

strong conclusions, as “conflicts among defaults that should remain unresolved, are re-

solved anomalously” [27]. Informally, if defaults (d18) and (d19) are conflicting for

Italian Phd students before adding any default which makes PhD students exceptional

wrt Students (in our formalization, default (d10)), they should remain conflicting af-

ter this addition. Instead, in the propositional case, both the rational closure [42] and

Lehmann’s lexicographic closure [43] would entail that normally Italian Phd students

are not home owners. This conclusion is unwanted, and is based on the fact that (d18)
has rank 0, while (d19) has rank 1 in the rational closure ranking. On the other hand,
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T(PhDStudent ⊓ Italian) ⊑ ¬HomeOwner is neithermc
l -entailed fromK , normc

lT-

entailed from K . Both notions of entailment, when restricted to the propositional case,

cannot be stronger than Lehmann’s lexicographic closure.

Geffner and Pearl’s Conditional Entailment [27] does not suffer from the above men-

tioned problem as it is based on (non-ranked) preferential models. The same problem,

which is related to the representation of preferences as levels of reliability, has also been

recognized by Brewka [13] in his logical framework for default reasoning, leading to

a generalization of the approach to allow a partial ordering between premises. The ex-

ample above shows that our approach using ranked preferences for the single modules,

but a non-ranked global preference relation < for their combination, does not suffer

from this problem, provided a suitable modularization is chosen (in example above, ob-

tained by separating the typical properties of Italians and those of students in different

modules).

6 Further issues: Reasoning with a hierarchy of modules and

user-defined preferences

The approach considered in Section 4 does not allow to reason with a hierarchy of mod-

ules, but it considers a flat collection of modules m1, . . . ,mk, each module concerning

some subject Ci. As we have seen, a module mi may contain defeasible inclusions re-

ferring to subclasses of Ci, such as PhDStudent in the case of module m2 with subject

Student . When defining the preference relation <i the lexicographic closure semantics

already takes into account the specificity relation among concepts within the module

(e.g., the fact that PhDStudent is more specific than Student).

However, nothing prevents us from defining two modules mi (with subject Ci) and

mj (with subject Cj ), such that concept Cj is more specific than concept Ci. For in-

stance, as a variant of Example 1, we might have introduced two different modules m2

with subject Student and m5 with subject PhDStudent . As concept PhDStudent is

more specific than concept Student (in particular, PhDStudent ⊑ Student is entailed

from the strict part of knowledge base T in ALC), the specificity information should be

taken into account when combining the preference relations. More precisely, preference

<5 should override preference <2 when comparing PhDStudent-instances.

This is the principle followed by Giordano and Theseider Dupré [36] to define a

global preference relation, in the case when each module with subject Ci only contains

typicality inclusions of the form T(Ci) ⊑ D. A more sophisticated way to combine the

preference relations<i into a global relation< is used to deal with this case with respect

to Pareto combination, by exploiting the specificity relation among concepts. While we

refer therein for a detailed description of this more sophisticated notion of preference

combination, let us observe that this solution could be as well applied to the modular

multi-concept knowledge bases considered in this paper, provided an irreflexive and

transitive notion of specificity among modules is defined.

Another aspect that has been considered in the previously mentioned paper is the

possibility of assigning ranks to the defeasible inclusions associated with a given con-

cept. While assigning a rank to all typicality inclusions in the knowledge base may be

awkward, often people have a clear idea about the relative importance of the properties
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for some specific concept. For instance, we may know that the defeasible property that

students are normally young is more important than the property that student normally

do not have a scholarship. For small modules, which only contain typicality inclusions

T(Ci) ⊑ D for a concept Ci, the specification of user-defined ranks of the Ci’s typical

properties is a feasible option and a ranked modular preference relation can be defined

from it, by using Brewka’s # strategy from his framework of Basic Preference Descrip-

tions for ranked knowledge bases [14]. This alternative may coexist with the use of the

lexicographic closure semantics built from the rational closure ranking for larger mod-

ules. A mixed approach, integrating user-specified preferences with the rational closure

ranking for the same module, might be an interesting alternative. This integration, how-

ever, does not necessarily provide a total preorder among typicality inclusions, which

is our starting point for defining the modular preferences <i and their combination.

Alternative semantic constructions should be considered for dealing with this case.

According to the choice of fine grained or coarse grained modules, to the choice of

the preferential semantics for each module (e.g., based on user-specified ranking or on

Lehmann’s lexicographic closure, or on the rational closure, etc.), and to the presence of

a specificity relation among modules, alternative preferential semantics for modularized

multi-concept knowledge bases can emerge.

7 Conclusions and related work

In this paper, we have proposed a modular multi-concept extension of the lexicographic

closure semantics, based on the idea that defeasible properties in the knowledge base

can be distributed in different modules, for which alternative preference relations can

be computed. Combining multiple preferences into a single global preference allows

a new preferential semantics and a notion of multi-concept lexicographic entailment

(mc
l -entailment) which, in the propositional case, is not stronger than the lexicographic

closure.

mc
l -entailment satisfies the KLM postulates of a preferential consequence relation.

It retains some good properties of the lexicographic closure, being able to deal with

irrelevance, with specificity within the single modules, and not being subject to the

“blockage of property inheritance” problem. The combination of different preference

relations provides a simple solution to a problem, recognized by Geffner and Pearl, that

the rational closure of conditional knowledge bases sometimes gives too strong conclu-

sions, as “conflicts among defaults that should remain unresolved, are resolved anoma-

lously” [27]. This problem also affects the lexicographic closure, which is stronger than

the rational closure. Our approach using ranked preferences for the single modules, but

a non-ranked preference < for their combination, does not suffer from this problem,

provided a suitable modularization is chosen. As Geffner and Pearl’s Conditional En-

tailment [27], also some non-monotonic DLs, such as ALC + Tmin, a typicality DL

with a minimal model preferential semantics [31], and the non-monotonic description

logic DLN [5], which supports normality concepts based on a notion of overriding, do

not not suffer from the problem above.

Reasoning about exceptions in ontologies has led to the development of many non-

monotonic extensions of Description Logics (DLs), incorporating non-monotonic fea-
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tures from most of NMR formalisms in the literature. In addition to those already men-

tioned in the introduction, let us recall the work by Straccia on inheritance reasoning in

hybrid KL-One style logics [46] the work on defaults in DLs [3], on description logics

of minimal knowledge and negation as failure [24], on circumscriptive DLs [7, 6], the

generalization of rational closure to all description logics [4]. as well as the combination

of description logics and rule-based languages [26, 25, 44, 40, 39, 34, 10].

Our multi-preference semantics is related with the multipreference semantics for

ALC developed by Gliozzi [38], which is based on the idea of refining the rational

closure construction considering the preference relations <Ai
associated with differ-

ent aspects, but we follow a different route concerning the definition of the preference

relations associated with modules, and the way of combining them in a single prefer-

ence relation. In particular, defining a refinement of rational closure semantics is not

our aim in this paper, as we prefer to avoid some unwanted conclusions of rational and

lexicographic closure while exploiting their good inference properties.

The idea of having different preference relations, associated with different typical-

ity operators, has been studied by Gil [28] to define a multipreference formulation of

the typicality DL ALC + Tmin, mentioned above. As a difference, in this proposal

we associate preferences with modules and their subject, and we combine the different

preferences into a single global one. An extension of DLs with multiple preferences has

also been developed by Britz and Varzinczak [16, 15] to define defeasible role quanti-

fiers and defeasible role inclusions, by associating multiple preference relations with

roles.

The relation of our semantics with the lexicographic closure for ALC by Casini

and Straccia [20, 22] should be investigated. A major difference is in the choice of the

rational closure ranking for ALC, but it would be interesting to check whether their con-

struction corresponds to our semantics in the case of a single module m1 with subject

⊤, when the same rational closure ranking is used.

Bozzato et al. present extensions of the CKR (Contextualized Knowledge Reposi-

tories) framework by Bozzato et al. [9, 10] in which defeasible axioms are allowed in

the global context and exceptions can be handled by overriding and have to be justi-

fied in terms of semantic consequence, considering sets of clashing assumptions for

each defeasible axiom. An extension of this approach to deal with general contextual

hierarchies has been studied by the same authors [11], by introducing a coverage rela-

tion among contexts, and defining a notion of preference among clashing assumptions,

which is used to define a preference relation among justified CAS models, based on

which CKR models are selected. An ASP based reasoning procedure, that is complete

for instance checking, is developed for SROIQ-RL.

For the lightweight description logic EL+

⊥, an Answer Set Programming (ASP) ap-

proach has been proposed [36] for defeasible inference in a miltipreference extension

of EL+

⊥, in the specific case in which each module only contains the defeasible inclu-

sions T(Ci) ⊑ D for a single concept Ci, where the ranking of defeasible inclusions

is specified in the knowledge base, following the approach by Gerhard Brewka in his

framework of Basic Preference Descriptions for ranked knowledge bases [14]. A speci-

ficity relation among concepts is also considered. The ASP encoding exploits asprin

[12], by formulating multipreference entailment as a problem of computing preferred
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answer sets, which is proved to be Π
p
2 -complete. For EL+

⊥ knowledge bases, we aim

at extending this ASP encoding to deal with the modular multi-concept lexicographic

closure semantics proposed in this paper, as well as with a more general framework,

allowing for different choices of preferential semantics for the single modules and for

different specificity relations for combining them. For lightweight description logics

of the EL family [1], the ranking of concepts determined by the rational closure con-

struction can be computed in polynomial time in the size of the knowledge base [35, 23].

This suggests that we may expect a Π
p
2 upper-bound on the complexity of multi-concept

lexicographic entailment.
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