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Abstract. Structural analysis of High-Level Petri Nets is a powerful technique, but it is less sup-
ported than in PNs. A symbolic calculus for Symmetric Nets (SNs) has been developed and imple-
mented, which allows one to check structural properties directly on SNs without unfolding: however
it is limited to a particular form of composition, restricted to functions that map to sets. To complete
the calculus for more general applications the ability to solve the composition of general SN arc ex-
pressions in a symbolic way is required. In literature, a few papers show how to solve this operation
for a restricted category of SN. In this report, we formalize the algebraic composition of general SN
bag-functions. Some applications are also discussed.

1. Introduction

The possibility of checking some properties of PN models on their structure instead of (or before) gen-
erating their state space is a strong point in favour of the PN formalism. The extension of the struc-
tural analysis techniques to High Level Petri Nets (HLPNs), without resorting to unfolding, has been
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considered in the literature and some interesting results have been published [9, 11, 13], however the
applicability of the proposed methods is often limited to particular classes of HLPNs and not completely
supported by software tools.

A contribution in this direction has been proposed in [6, 4] for models represented with the Sym-
metric Net (SN) formalism: it consists of a symbolic calculus operating on the arc expressions of the
formalism, allowing to derive several interesting structural properties in a symbolic and parametric form;
the software tool SNexpression1[7] implements the results developed so far in this direction. One limi-
tation of such calculus concerned the composition operator, which could be applied only to the support
of arc expressions (hence to functions mapping to sets): although this is sufficient for the computation
of several symbolic structural relations (e.g. symbolic structural conflict or causal connection [5]) it is
not enough e.g. for checking some invariant properties based on the definition of P and T-semiflows,
or for applying model reduction by agglomeration of transitions, two techniques that have been applied
to concurrent programs verification [11]. This report fills the gap by defining the theory allowing to
symbolically apply the composition operator to general SN arc functions.

The report contains the results presented in [8], adding details about the proof of lemmas, corollaries
and properties enunciated in the paper and expanding the applications section.

Report organization: Some definitions and notations are introduced in Sec. 1.1 and 1.2. In Sec. 2,
3 and 4 we describe the steps to solve the general composition of SN functions. In Sec. 5 two example
applications are illustrated. Sec. 6 concludes the report and outlines directions for future work.

1.1. Basic definitions, notations, properties

A (generalized) bag b over a domain A is a map b : A→ Z. The set of bags over A is denoted Bag[A].
Let a ∈ A and b ∈ Bag[A]: we write a ∈ b if and only if b(a) 6= 0. The set b = {a, a ∈ b} is the support
of b. The bag with an empty support, called null, is denoted ∅A or just ∅ if its domain is clear from the
context. Bags b1, b2 ∈ Bag[A] are disjoint if and only if b1 ∩ b2 = ∅. A proper bag is a map b : A→ N.
The set of proper bags over A is denoted Bag+[A]. The size of b ∈ Bag+[A], |b|, is

∑
a b(a). Bag b is

type-set if ∀a ∈ b b(a) = 1. A bag b 6= ∅ may be represented as a formal sum
∑

a∈A b(a).a.
Let b1, b2 ∈ Bag[A], k ∈ Z. The scalar product k · b1 and the sum (diff) b1 ± b2 are operations in

Bag[A] defined as (k · b1)(a) = b1(a) · k and b1 ± b2(a) = b1(a)± b2(a), ∀a ∈ A.
Operator + is associative, − is associative on Bag[A], but not on Bag+[A], + is commutative. ∅ is

the neutral element for +,−.
The Cartesian product is defined as follows. Let b1 ∈ Bag[A], b2 ∈ Bag[B]: b1×b2 ∈ Bag[A×B]

is b1×b2(〈a, b〉) = b1(a)·b2(b), ∀a ∈ A, b ∈ B. The notation 〈b1, b2, . . .〉 is used in place of b1×b2×. . ..
The Cartesian product is associative and may be distributed over inner +,−: 〈. . . , b1 op b2, . . .〉, op ∈
{+,−} = 〈. . . , b1, . . .〉 op 〈. . . , b2, . . .〉. Finally, 〈. . . , k · b1, . . .〉 = k · 〈. . . , b1, . . .〉.

1.2. A brief introduction to Symmetric Nets

The SN formalism belongs to the HLPN class: places and transitions are associated with a color domain
C(.) expressing the possible colors of tokens and of the transition instances. Arcs are annotated by
expressions, representing functions from C(t) to multisets Bag+[C(p)]; W−(p, t) and W+(p, t) denote
1http://www.di.unito.it/∼depierro/SNexpression/
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Figure 1. A SN example: Producers and Consumers

t input and output arc expressions. The structure of a color annotation is based on the definition of
color classes (finite not empty sets), which may be partitioned into (static) subclasses or be circularly
ordered, and on a restricted set of basic functions: Si, Si,k, Xi, !Xi namely diffusion/synchronization
(on class Ci or subclass Ci,k), projection Xj

i and successor !Xj
i , the latter only allowed for ordered

classes. Color domains are defined as Cartesian products of n classes (a class may be repeated in a color
domain). The arc expressions are weighted sums of tuples (Cartesian product) of basic functions (see
definition 3.1). In the SN of Fig.1, representing a set of producers and a set of consumers communicating
through a buffer (FIFO queue), there are two color classes, C1 (circularly ordered, used to record the
position of messages in the buffer) and C2 (id of producers/consumers), partitioned into two subclasses
C21, C22. The places color domains are C2, C1, C1 × C2 (tokens are tuples of one or two elements);
some places and one transition in this net have neutral color (as in PNs, e.g. place empty and transition
ProduceBurst). The transitions have color domain C2, C1 ×C2, C1 ×C2

2 , depending on the projection
symbols appearing on their arcs; one transition has a guard: a predicate restricting the allowed color
instances. Arc expressions in Fig.1 are quite simple2: 〈X1

2 〉, 〈!X1
1 〉, 〈X1

1 , X
2
2 〉, 〈S2,2〉. The guard is a

boolean expression whose terms can be either (Xj
i = Xk

i )/(!X
j
i = Xk

i ) or Xj
i ∈ Ci,k. An example of

transition instance is Get(pos1, pc1, pc2): it satisfies the guard g (the two colors pc2, pc3 ∈ C2 belong to
the same subclass C22), and the projectionX1

1 (pos1, pc2, pc3) = pos1, whileX2
1 (pos1, pc2, pc3) = pc2,

X2
2 (pos1, pc2, pc3) = pc3, finally !X1

1 (pos1, pc2, pc3) = pos2. A more formal definition of the SN arc
expressions will be given later. Produce burst has only one instance since the functions 〈S22〉 on its
arcs are constant, mapping on C22. The incidence matrix can be derived from the SN structure: in Sec.5
it will be exploited to check some invariants of this SN model.

Definition 1.1. (Incidence Matrix)
The incidence matrix C of a HLPN model N is a P × T matrix of functions: C[p, t] = W+(p, t) −
W−(p, t). If a transition instance t(c) enabled in marking mi fires, the corresponding state change can
be defined in terms of the incidence matrix as: mj = mi + C[., t](c).

2In the picture the successor operator is ++ and the diffusion/synchronization is Cij .
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2. Bag-expressions: general properties of composition

Operators op ∈ {+,−} on functions mapping to Bags are defined as follows, in terms of Bag-operations.
Let f, h : A→ Bag[D], op ∈ {+,−}: (f op h)(a) = f(a) op h(a), (k · f)(a) = k · f(a), ∀a ∈ A. The
constant function mapping to the null bag is denoted εA,D (or just ε).

Given a family of functions {fi : A → Bag[Di]}, the function-tuple 〈f1, f2, . . .〉 is a map A →
Bag[D1 ×D2 × . . .], such that 〈f1, f2, . . .〉(a) = 〈f1(a), f2(a), . . .〉. Instead of tuple notation we may
use ⊗ifi.

The properties of operations on bags, as well as the type-set notion, apply to bag-functions by con-
sidering all function arguments. We call any expression built of bag-functions a bag-expression.

Definition 2.1. (function linear extension)
Let f : A → Bag[D]. The linear extension f∗ : Bag[A] → Bag[D] is f∗(b) =

∑
a∈A b(a) · f(a),

∀b ∈ Bag[A].
The composition of bag-expressions builds on function linear extension.

Definition 2.2. (composition)
Let f : A→ Bag[D], h : C → Bag[A]. Then f ◦ h : C → Bag[D] is f ◦ h(c) = f∗(h(c)), ∀c ∈ C.

We shall use the same symbol for a function and its linear extension. When a function takes a bag as an
argument we implicitly refer to its linear extension.

Here are some base properties of composition of bag-expressions. Their directly descend from def-
initions above and properties of bags. Symbols f, h, g denote any functions mapping to bags, with
compatible arity.

Property 1. (basic properties of ◦)

(f ◦ h) ◦ g = f ◦ (h ◦ g) f ◦ ε = ε ◦ h = ε λ1 · f ◦ λ2 · h = λ1λ2 · f ◦ h, λi ∈ Z
(f ± h) ◦ g = f ◦ g ± h ◦ g f ◦ (h± g) = f ◦ h± f ◦ g

The use of generalized bags makes it possible to distribute a composition over a difference or sum
during the symbolic calculus. This is very helpful because a complex composition may be reduced to an
algebraic sum of simpler ones, however, for the sake of efficiency we try to minimize term expansion.

Bag-expressions may be prefixed by filters and suffixed by guards, both expressed as predicates. A
[true] guard/filter is usually omitted. Let p : A → {true, false}. A filter or guard [p] is a function
A→ Bag[A] such that [p](a) = 1 ∗ a if p(a) = true, [p](a) = ∅ otherwise. Let f : A→ Bag[D], and
p′ be a predicate on D. The expressions f [p] and [p′]f stand for f ◦ [p] and [p′] ◦ f , respectively: as a
consequence, the following properties of filters and guards hold.

Property 2. (basic properties of filters/guards; = stands for ≡)

[p]k · f = k · [p]f, k ∈ Z
[p1]([p2]f) = [p1 ∧ p2]f (f [p2])[p1] = f [p1 ∧ p2]
〈f [p1], h[p2]〉 = 〈f, h〉[p1 ∧ p2] 〈f [p], h〉 = 〈f, h〉[p]
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The following definition characterizes an important class of (guarded) functions.

Definition 2.3. (constant-size function)
f : A→ Bag+[D] is constant-size iff ∃n ∈ N+ such that ∀a ∈ A f(a) 6= ∅ ⇒ |f(a)| = n.

Hereafter, with f constant-size we mean f ≡ f ′[p], with f ′[p] = ε iff p = false. The following two
general properties of composition concern constant and constant-size functions.

Property 3. (composition of a constant and a constant-size function)
Let f : B → Bag[D] be a constant function so defined: f(b) = d,∀b ∈ B. And let h[g] : A→ Bag[B]
be a n constant-size function, where h[g](a) = ∅ iff g(a) = false. Then, the composition f ◦ h[g] is
defined as follows: ∀a ∈ A, f ◦h[g] = n · f ′[g], where f ′[g] : A→ Bag[D] is such that ∀a ∈ A, g(a) =
true⇒ f ′(a) = d.

Property 4. (composition of a tuple including a constant)
Let f ′ be a constant function. Then 〈f, f ′〉 ◦ h = 〈f ◦ h, f ′〉.

Since f and f ′ might be tuples in turn, Property 4 applies (up to a permutation of tuple positions) to any
T ◦ h, where T := 〈f1, . . . , fm〉 contains some constant components and others non-constant. We may
thus reduce such a composition to T ′ ◦ h, where T ′ is built of all and only the non-constant components
fi of T . In the sequel, we focus on this case.

3. A language for composition of SN functions

Let us anticipate the main result presented in this report by introducing the language used to calculate
and express the composition of SN functions.

Definition 3.1. (Language Lc)
Let

- D = Ce11 × Ce22 × ... × Cenn , e∗ ∈ N, be any color domain, i.e., a Cartesian product of colour
classes (we can assume that all color domains match this ordered form; ei = 0 means that Ci
doesn’t occur on D).

- BD
i =

{
Xj
i , Si, Si,k, !

sXj
i : D → Bag[Ci]

}
, i : 1, . . . , n, j : 1, . . . , ei, k : 1, . . . , ||Ci||, s ∈ Z;

be the set of elementary functions, where !s denotes the s-th mod|Ci| successor on Ci (!sXj
i ≡

!s ◦Xj
i , !0 = id) 3.

- Tj : D → Bag[D′], Tj = 〈f1, . . . fl〉, and ∀r : 1, . . . , l, fr : D → Bag[Ci], fr =
∑

m βm · hm,
βm ∈ Z, hm ∈ BD

i (where i is consistent with D′); fr is said a class-function.

- g′j and gj be SN predicates on D′ and D, respectively, such that all class functions appearing in
Tj [gj ] map to proper bags when gj is true.

Lc =
{
E : D → Bag[D′], E =

∑
j

λj [g
′
j ]Tj [gj ],∀D,D′

}
, λj ∈ Z

3symbols !sXj
i , with s 6= 0, and Si,k are mutually exclusive because we assume a color class is either partitioned or circularly

ordered.
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Any class-function fr has as implicit guard: the guard of the tuple it belongs to.

Theorem 3.1. Lc is closed under composition.

The properties and lemmas presented in the sequel justify the claim above4. Before that, let us point
out a few interesting facts about Lc.
Lc includes SN arc-functions, where scalars are such that they map to Bag+[D′]. The possibility

of prefixing function-tuples with filters makes Lc slightly more expressive than the language of SN arc-
functions.

With respect to the language (L) of SN structural relations defined in [4, 5] and implemented in
SNexpression [7] the main difference is that class-functions belong to SN legacy: Si − Xj

i is a dif-
ference between elementary functions (often treated as an idiom), not a new symbol; the intersection
operator (though helpful) is not part of the language; scalars are in Z; class-functions and, consequently,
function-tuples are themselves bag-expressions, whereas both in L and the new GreatSPN GUI [2] they
are set-expressions. As long as we restrict to expressions mapping to proper bags, however, L and Lc are
equivalent. We use Lc for the sake of convenience/efficiency during the symbolic calculus.

The next important properties of Lc directly follow from the definition of Lc, the Cartesian product
and filter/guard properties, and the basic predicate reductions listed in the Appendix A.2; the proof of all
relevant properties and lemmas are in the Appendix A.1.

Property 5. (conjunctive form equivalence)
Any E ∈ Lc can be rewritten into E′ ∈ Lc, E′ ≡ E, in which the predicates of filters/guards are
conjunctive forms exclusively composed of (in)equality/membership clauses.

Property 6. (type-set equivalence)
AnyE ∈ Lc can be rewritten intoE′ ∈ Lc,E′ ≡ E, in which class-functions (therefore, function-tuples)
are type-set.

Property 7. (constant-size function)
Any class-function fr is constant-size when considering its implicit guard. |fr| is the weighted algebraic
sum of sizes of elementary terms of fr.

A function-tuple not prefixed by a filter is constant-size. Its size is the product of sizes of tuple’s
components.

For instance, |(S1−X1
1 −X2

1 )|, with the implicit guard X1
1 6= X2

1 , is equal to |C1| − 2. This expression
is also type-set.

A function-tuple prefixed by a filter may not be constant-size. An example is [X1
1 = X2

1 ]〈S1 −
X2

1 , S1 − X1
1 〉: the size of this function-tuple depends on whether the 1st and 2nd element of a color-

tuple argument are the same or not, it is |C| − 1 when applied to 〈c, c〉 and |C| − 2 when applied to
〈c, c′〉, c 6= c′.

Property 8. (constant-size equivalence)
Any E ∈ Lc can be rewritten into E′ ∈ Lc, E′ ≡ E, uniquely composed of constant-size terms.

4showing the closure of Lc under all the other operations on bag-expression (sum, difference, intersection, transpose), though
much simpler, is not the focus here.
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Thus, if needed, we can transform any expression into an equivalent sum of constant-size (and/or
type-set) terms. We will return to this in Section 4.1.

When calculating a Cartesian product, we have to take care of possible filters. Since we consider
domains ordered by color, we only have to deal with two cases.

Property 9. (Lc tuple Cartesian product)
Let F1, F2 ∈ Lc, F1 : D → D′, F1 = [g1]T1; F2 : D → D′′, F2 = [g2]T2, such that D′, D′′ are either a)
disjoint or b) D′ = Cmi , D′′ = Cni , n,m ∈ N+.

Then 〈F1, F2〉 = [g1 ∧ g2∗]〈T1, T2〉, where g2∗ = g2 in case a), g2∗ is obtained by replacing each Xj
i

in g2 with Xj+m
i in case b).

All results we are presenting (including those in Section 2) hold modulo a permutation of tuples.

3.1. Conventions/notations used in the sequel

Lower-case letters f, g, h, p denote class-functions and predicates, if enclosed between angular and
square brackets, respectively, otherwise represent any bag-expression (like in Section 2). Upper case F
denotes any expression inLc whereas T any (possibly guarded) function-tuple inLc. V ar(f) denotes the
set {Xi

j} of variables (projections) appearing in f : if f = [g]f ′[g′] then V ar(f) = V ar(f ′) ∪ V ar(g′).
Let X be a non-empty set of typed variables: f(X) denotes a function such that V ar(f) = X . We

may list all function variables, e.g., f(Xj
i , X

w
h ) meaning that V ar(f) = {Xj

i , X
w
h }. The subsetXi ⊆ X

holds the class-Ci variables.

Index restriction r Let D: Ce11 ... × Cenn , f = f(X) : D → Bag[D′], and e′j = |Xj | (by the way,

e′j ≤ ej). The index restriction of f is a function f r: Ce
′
1

1 ... × C
e′n
n → Bag[D′], obtained from f by

replacing symbols in Xi
j ∈ Xj , in superscript order, with X1

j , . . . , X
e′j
j , for each j, e′j < ej .

For example, let T = 〈X1
1 + 2X3

1 , X
3
1 , X

2
2 〉: C1

3 × C2
2 → C1

2 × C2, then T r = 〈X1
1 +

2X2
1 , X

2
1 , X

1
2 〉 : C1

2 × C2 → C1
2 × C2.

Let X be a set {Xi
j}, Xi

j : D → Cj .

Domain projection Π By convenience, we assume X ordered, first by class index then by superscript.
We say the tuple ΠX,D : D → D′ = ⊗Xi

j∈X
Xi
j projection of D (on D′) induced by X . D is omitted

when clear from the context.

Projection image X Let T ′ = 〈h1, . . . , hm〉 with codomain D. The image of X on T ′ is the subtuple
T ′
X

= ⊗i:∃Xi
j∈X

hi, with the same domain as T ′. We denote by T ′¬X the residual sub-tuple of T ′.

4. Composing Lc expressions

Let T : D → Bag[D′], T ′ : D′′ → Bag[D], D = Ce11 ...× Cenn , X = V ar(T ) ∧ V ar(T ) 6= ∅. Solving
T ◦ T ′ means being able to rewrite this expression into F ≡ T ◦ T ′. The algorithm to solve composition
operates top-down. Each step is described in detail in this section. We proceed by making assumptions
more and more stringent on T, T ′, until we get a base form.
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We initially assume to have preliminarily operated all generic reductions described in Sec.2, thus we
let T be 〈f1, . . . , fn〉[g], where ∀i V ar(fi) 6= ∅, and T ′ = 〈h1, . . . , hm〉. In most of following examples
tuple arity is implicit.

Property 10. T = T r ◦ΠX .

A first basic result says that we can solve T ◦ T ′ by considering T r and the image of V ar(T ) on T ′.

Lemma 4.1. Let T = T (X) and T ′
X
6= T ′. If T ′¬X is of constant-size k, then:

T ◦ T ′[g′] = k · T r ◦ T ′
X
[g′]

Here is an example of application of Lemma 4.1:

〈X1
1 , X

1
1 , S1 −X3

1 〉 ◦ 〈S1, 2S1 −X1
1 , S1,1 +X2

1 〉 = (2|C1| − 1) · 〈X1
1 , X

1
1 , S1 −X2

1 〉 ◦ 〈S1, S1,1 +X2
1 〉

Based on Lemma 4.1 (and Property 8), we focus on tuple compositions where the image of left tuple’s
variables coincides with the entire right tuple.

A second basic result allows one to distribute a composition over the independent parts of the left
operand (up to a permutation of tuple elements).

Lemma 4.2.
Let T = 〈F1(X1), . . . , Fh(Xh)〉 ∧ ∀i, j, i 6= j,Xi ∩Xj = ∅, ∧T ′X = T ′.

T ◦ T ′ = 〈F1
r ◦ T ′

X1
, . . . , Fh

r ◦ T ′
Xh
〉

In other words, one can separately compose independent sub-tuples of T with their images on T ′,
whatever form they have. As a consequence, due to color independence, one can partition T (and T ′) in
sub-tuples based on color-classes.

We therefore focus on function-tuples Cei → Ce
′
i and hereafter omit class index in basic functions:

Xj replaces Xj
i , Sj replaces Si,j , S replaces Si. We assume that monochromatic tuples do not include

independent sub-tuples.
Lemma 4.2 exploits a nice property of linear extension of Cartesian product of bag-functions by

which, if an argument is in turn a product of bags, it is possible to evaluate the product-function in a
modular way.

Let us illustrate Lemma 4.2 with a non-trivial example:

〈X1, X3, S −X2, X2〉[X1 6= X3 ∧X2 6= X4] ◦ 〈S, 2S −X1
1 , S, S1 + 2X2〉 =

〈〈X1, X3〉[X1 6= X3], 〈S −X2, X2〉[X2 6= X4]〉 ◦ 〈S, 2S −X1, S, S1 + 2X2〉 Lem.4.2=

〈〈X1, X2〉[X1 6= X2] ◦ 〈S, S〉, 〈S −X1, X1〉[X1 6= X2] ◦ 〈2S −X1, S1 + 2X2〉〉

The two compositions that we ended up with are representatives of the base cases of tuple composi-
tion we have to solve.
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4.1. Tuple composition’s base cases

We can identify a few base cases of function-tuple composition as a result of Lemma 4.2 application.
One in which the left-hand tuple is a one-variable function and the right tuple is a singleton. The others
in which there is an infix predicate (guard/filter) that cannot be eliminated. The presence of an infix
predicate complicates the solution of a composition. Based on properties of filters and filter reduction
rules we may reduce such expressions to a particular form. The following statements assume that the
right operand of a composition (T ′) is possibly followed by a guard.

Definition 4.1. (tuple prefix/composition simple form(s))
Let T ′ = 〈h1, . . . , hm〉. A tuple-prefix [g]T ′ is simple if and only if

1. g is a conjunction of (in)equalities, such that for each clause (Xi 6==!sXj) in g: hi is type-set,
|hi| > 1, and hi =!shj

2. let g= ∪ g6= be the partition of g in equalities and inequalities

(a) if g 6= 6= ∅, each partition g1 ∪ g2 of g6= is such that V ar(g1) ∩ V ar(g2) 6= ∅
(b) if g= 6= ∅, then g= may be partitioned in gi=, . . . , g

w
=, w ∈ N+, such that ∀i, j, i 6= j,

V ar(gi=) ∩ V ar(gj=) = ∅
∀gi= V ar(gi=) ∩ V ar(g 6=) = {Xj}

T [g] ◦ T ′ is a simple form of composition if and only if [g] ◦ T ’ is a simple tuple-prefix and
∀i |V ar(gi=) ∩ V ar(T )| ≤ 1.

Claim 1. We can rewrite any composition T [g]◦T ′ that cannot be decomposed according to Lemma 4.2
in terms matching Definition 4.1 (see rewriting rules in the Appendix A.2).

In other words, if required we may assume that infix predicates are made of (in)equalities between
projections which point to equal (modulo-successor) type-set class-functions of T ′ of size> 1. Equalities
define equivalence classes of projections, one representative of each class must appear in inequalities,
and at most one occur on T . For example: Let (|C2| > 1):

〈S2 −X3, X1〉[X1 6= X2 ∧X1 ∈ C2 ∧X1 = X3] ◦ 〈S, S, S +X1〉 →

〈S2 −X1, X1〉[X1 6= X2 ∧X1 = X3] ◦ 〈S2, S2, S2〉+

〈S2 −X1, X1〉[X1 = X3] ◦ 〈S2, S − S2, S2〉+ 〈S2 −X1, X1〉 ◦ 〈X1, S −X1, X1〉[X1 ∈ C2]

Tuples prefixed by a filter matching Definition 4.1 (part 1) have an important property.

Property 11. A simple tuple-prefix [p]T : D → Bag[D′] is constant-size.

Four base cases have to be considered, they are listed below.

1. T (X1) ◦ 〈h〉

2. T (X)[g] ◦ T ′, with |X| > 1 and X ⊇ V ar(g)

3. T (X)[g] ◦ T ′, with X ⊂ V ar(g)

4. T [g] ◦ T ′, with V ar(T ) ∩ V ar(g) = ∅
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4.1.1. Case 1: T (X1) ◦ 〈h〉
In absence of infix predicates, we can always reduce to one such form due to the distribution property of
sum/diff. For example:

〈S −X1 + 2X2, X2〉 ◦ 〈h1, h2〉 = 〈(S −X1) ◦ 〈h1〉, X1 ◦ 〈h2〉〉+ 2|h1| · 〈X1, X1〉 ◦ 〈h2〉

Case 1.a: |h| = 1; this is the simplest situation

Property 12. Let |h| = 1. Then F (X1) ◦ 〈h〉 is obtained by replacing each occurrence of symbol X1 in
F with h.

It directly follows from the definition of composition.
For example, 〈S +X1, X1〉 ◦ 〈h2〉, |h2| = 1 −→ 〈S + h2, h2〉.

Case 1.b: |h| > 1. The basic compositions are summarized in the following table (omitting tuple
notation):

Basic composition rules and some useful identities

X1 ◦ h = h !sX1 ◦ h =!sh S −X1 ◦ h = |h| · S − h S−!rX1 ◦ h = |h| · S−!rh
!rS = S !s!rXi =!s+rXi !r(h1 ± h2) =!rh1±!rh2

If T = 〈f1(X1)〉 the above basic rules (and property 4) are enough. For example, letting |C1| = 3:
〈2S −X1−!X1〉 ◦ 〈S −X2〉 → 〈4S − S +X2 − S+!X2〉 ≡ 〈2S +X2+!X2〉.

Repetition of a projection in T Let T = 〈f1(X1), . . . , fm(X
1)〉, where (without loss of generality

due to Property 6) fi(X1) =!siX1, ∀i (symbol !sXi from now on denotes a projection possibly prefixed
by the s-th successor). We consider first an unordered color class, then we generalize.

Property 13. Let h be type-set. 〈X1, . . . , X1〉︸ ︷︷ ︸
m>1

◦〈h〉 = [
∧
i:2...mX

1 = Xi] 〈h, . . . , h〉︸ ︷︷ ︸
m

Here are some non-elementary, type-set class-functions5:
S −X1; S −X1 −X2[X1 6= X2]; Si −X1[X1 ∈ Ci]; S −X1−!X1.

We can extend the above outcome to any color class.

Property 14. Let h be type-set.

〈!r1X1, . . . , !rmX1〉 ◦ 〈h〉 = [
∧

i:2...m

X1 = !(r1−ri)Xi]〈!r1h, . . . , !rmh〉

As an example:
〈!X1, X1, !X1〉 ◦ 〈S −X2〉 = [X1 =!X2 ∧X1 = X3]〈S−!X2, S −X2, S−!X2〉.

In some cases may treat the idiom S −X1 as a single function for convenience. Here are two situations
that are more efficiently processed applying the following properties, although they could be solved
applying the previous rules. Without loss of generality, in both cases S −X1 is the last element of T .
5if b is any bag, 〈X1, . . . , X1〉(b) is obtained from [

∧
i:2...m X1 = Xi]〈b, . . . , b〉 by applying the mth root to multiplicities of

bag elements
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Property 15. Let h be a type-set function.
〈X1, . . . , X1, S −X1〉︸ ︷︷ ︸

m

◦〈h〉 = [X1 6= Xm
∧
i:2...m−1X

1 = Xi] 〈h, . . . , h, S〉︸ ︷︷ ︸
m

If there are no repetitions of X1 then h may be any function.

Property 16. 〈X1, S −X1〉 ◦ 〈h〉 = [X1 6= X2]〈h, S〉

We may extend the two properties above to any class by expressing (in-)equalities like in Property 14.
As an example:
〈S−!X1, X1〉 ◦ (S +X2) = [X1 6=!X2]〈S, S +X2〉.

Finally, we can always reduce complex compositions to simpler (solvable) forms by distributing the
composition over a sum/difference. For example:
〈S−!X1, X1, S −X1〉 ◦ 〈h〉 = 〈S,X1, S −X1〉 ◦ 〈h〉 − 〈!X1, X1, S −X1〉 ◦ 〈h〉.

4.1.2. Case 2: T (X)[g] ◦ T ′, |X| > 1, X ⊇ V ar(g)

In this and in the next case we may assume, without loss of generality, that g is composed of (in-
)equalities and T = 〈f1, . . . , fm〉, where fi =!siXj , ∀i. Consider, for example:

〈X2, !X2, X3, !2X1〉[X1 6= X3 ∧X1 6= !X2] ◦ 〈h1, h2, h3〉
This expression doesn’t match Lc. However, we can transform the guard in between into a filter

prefixing the left tuple through an index substitution, i.e., an injective map φ : V ar(T ) → {1 . . .m}
associating each Xi to the position of any of its occurrences in T . The picture below illustrates the idea.

〈X2, !X2, X3, !2X1〉[X1 6= X3 ∧X1 6= !X2].

The following rule formalizes the move of a clause of a guard g to a filter prefixing T (Xi 6== !kXj ≡
Xj 6== !−kXi).

Lemma 4.3. (transforming the infix predicate into a filter)
Let φ(i), φ(j) be any two occurrences of variables Xi, Xj , i 6= j, in tuple T .

〈. . . ,
φ(i)

!rXi, . . . ,
φ(j)

!sXj , . . .〉︸ ︷︷ ︸
T

[Xi 6== !kXj , . . .] −→ [Xφ(i) 6== !k+r−sXφ(j)]T [. . .]

Corollary 4.1. Let T [g], with T = 〈f1, . . . , fm〉 and g be a set of (in)equalities. If ∀Xi ∈ V ar(g) there
is fj , fj =!sXi, then ∃p T [g] ≡ [p]T .

Therefore, if V ar(T ) ⊇ V ar(g) the reiterated application of Lemma 4.3 eventually removes the infix
guard from T (X)[g] ◦ T ′.

Applying Lemma 4.3 to the last example,we can proceed with Lemma 4.2.
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Lem.4.3−→ [X4 6=!2X3 ∧X4 6= !2X2]〈X2, !X2, X3, !2X1〉 ◦ 〈h1, h2, h3〉
Lem.4.2−→ [X4 6=!2X3 ∧X4 6= !2X2]〈〈X1, !X1〉 ◦ 〈h2〉, X1 ◦ 〈h3〉, !2X1 ◦ 〈h1〉〉

4.1.3. Case 3: T (X)[g] ◦ T ′, X ⊂ V ar(g)
This situation is the most complex one. The reason is that we must project on X = V ar(T ) the applica-
tion of the filter g on T ′, in a symbolic way.

We assume that g is no further reducible, the composition to solve matches Definition 4.1 and none
of lemmas presented so far applies (in particular Lemma 3.1, thus T ′V ar(g) = T ′).

Let A ⊆ V ar(g): we say gA = {(Xi 6==!rXj) ∈ g|Xi, Xj ∈ A} the restriction of g to variables A.
A first simplification comes from the fact that we may take out equalities of g. We recall that f r

denotes the index-restriction of f .

Property 17. Let [g]T ′ meet Definition 4.1, g= 6= ∅, X ′ = X ∪ V ar(g6=). Then

T (X)[g] ◦ T ′ =(T [g6=])
r ◦ T ′

X
′

This nice property stems from the fact that (by Definition 4.1) T ′ components are equal (modulo succes-
sor) and in T only one symbol per equivalence class is used. Here are some examples of application of
Property 17. For simplicity, in all the following examples X = {X1, . . . , Xm} (T = T r).

1) 〈X1, S −X1〉[X1 = X2, X1 = !X3] ◦ 〈S−!X2, S−!X2, S −X2〉 Prop.17−→

〈X1, S −X1〉 ◦ 〈S−!X2〉 Prop.16−→ [X1 6= X2]〈S−!X2, S〉

2) 〈X1, !X2〉[X1 6= !X2, X2 = X3] ◦ 〈S−!X2, S −X2, S −X2〉 Prop.17−→

〈X1, !X2〉[X1 6= !X2] ◦ 〈S−!X2, S −X2〉 Lem.4.3,Lem.4.2−→ [X1 6= X2]〈S−!X2, S−!X2〉

3) 〈X2, X2〉[X1 6= X2, X2 6= X4, X1 = X3] ◦ 〈S1, S1, S1, S1〉
Prop.17−→

(〈X2, X2〉[X1 6= X2, X2 6= X4])r ◦ 〈S1, S1, S1, S1〉{X1,X2,X4} ≡

〈X2, X2〉[X1 6= X2, X2 6= X3] ◦ 〈S1, S1, S1〉 (non-reducible with the available rules)

Main sub-case: g = g6= We may therefore assume that g is a non-empty set of inequalities and focus
on ΠX ◦ [g]T ′.

In general, we figure out that it holds

ΠX ◦ [g]T ′ ⊆ [gX ]
r T ′

X
(1)

Equation 1 says that, disregarding bag multiplicity, the projection of [g]T ′ on V ar(T ) is included
in the restriction of [g] to V ar(T ) which applies to the image of V ar(T ) on T ′. It follows from our
assumptions, by which: g ⇒ gX .
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In the sequel, we characterize particular forms [g]T ′ verifying

ΠX ◦ [g]T ′ = k · [gX ]r T ′X , k ∈ N (2)

showing that (modulo some rewriting) we can always reduce our expression to such a form. An imme-
diate corollary of (2) is:

Corollary 4.2. Let T = T (X), X ⊂ V ar(g).
If (2) holds and [g] ◦ T ′ is a simple tuple-prefix (Definition 4.1) then:
T (X)[g] ◦ T ′ = k · T r[gX ]r ◦ T ′X , where k = |[g]T ′|

|[gX ]rT ′
X
| if |[gX ]rT ′X | 6= 0, otherwise k = 0

Corollary 4.2 outlines that we bring a composition to a form where the variables of the left tuple are a
super-set of those of the infix predicate.
Consider this simple but interesting case where T [g] : C3 → C2, T ′ : C → C3.

〈X1, X2〉
T

[X1 6= X3 ∧X2 6= X3]
g

◦ 〈S −X1, S −X1S −X1〉
T ′

|C| > 2

In this case condition (2) is not verified: Π{X1,X2} ◦ [g]T ′(c) turns out to be, for any c ∈ C, |C| > 2:

(|C| − 2) ∗
∑

c′∈C,c′ 6=c
〈c′, c′〉+ (|C| − 3) ∗

∑
c′,c′′∈C,c′ 6=c,c′′ 6=c,c′ 6=c′′

〈c′, c′′〉

The restriction of g[T ′] toX = {X1, X2} used on the right-hand side of (2), instead, is 〈S−X1, S−
X1〉 (in this particular case, gX = {}). As the example suggests, we should distinguish (in g) the case
X1 = X2 from the case X1 6= X2.

Since we are assuming that the requirements of Definition 4.1 are met, we may conveniently study
[g]T ′ as a system of inequalities (in case of ordered classes, the successors are all expressed modulo-|C|)
among V ar(g) variables, with the implicit constraints Xi ∈ hi(c), ∀Xi ∈ V ar(g), hi being the i-th
component of T ′. Thus, [g]T ′(c) is a type-set bag which corresponds to the system’s solutions, while
ΠX ◦ [g]T ′(c) is a bag representing their projection on subset X .

Due to the symmetry of g and to the fact that functions hi are equal (modulo successor), we can
abstract from both c and i and consider any hi as a (parametric) set of known size.

We put some conditions on g to ensure that the projection of the inequality system’s solutions on X
is the parametric multi-set consisting of k instances of the solutions of the sub-system restricted to X ,
i.e., [gX ]

r T ′
X

.
We consider first an unordered color-class C. In that case, hi = h, ∀i, and we may represent g as

an undirected simple graph whose vertices are V ar(g) and whose edges connect vertices corresponding
to variables that are required to be different by a term of g. Abusing notation, we denote the same way
g and the corresponding graph, leaving the context to disambiguate. Thus, we may interpret gX as a
(proper) subgraph of g.

A few basic results of graph-colouring theory turn out to be useful for our purposes (refer to [10]
for all the details). Given a graph G = (VG, EG), where VG is a non-empty finite set and EG a set
of unordered pairs xy, x, y ∈ V (G), x 6= y, and λ ∈ N, we define a λ-colouring of G as a map
ϕ : VG → {1, 2, . . . , λ} that assigns adjacent vertices of G different values. We are interested in the
number of different λ-colourings of G, denoted P (G,λ). The minimum value of λ such that G admits
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a λ-colouring is the chromatic number of G, denoted χG. The value |V (G)| is the order of G. We say
that G is empty if E(G) = ∅, complete (or clique) if any two vertices are adjacent. A clique of order n
is denoted Kn. We use a few operations on graphs: let x, y be two vertices of G, G · xy, xy /∈ E(G), is
the graph obtained from G by merging x and y and leaving one occurrence of possible resulting multiple
edges; G − xy, xy ∈ E(G), the graph obtained by removing edge xy; G + xy, xy /∈ E(G), the graph
obtained by adding edge xy.

P (G,λ) can be expressed as a polynomial in λ, called chromatic polynomial ofG. This is interesting,
since it gives us the possibility to express a composition’s result in a parametric way. Computing χG is
around O(2n), and computing P (G,λ) is at least as complex. [10] shows, however, that for large classes
of graphs you can compute P (G,λ) very efficiently, e.g., exploiting their modular structure. How to
compute the chromatic polynomial is out of the scope of the report, however, here are a few intuitive
properties used in the sequel.

• (Fundamental reduction theorem) let x, y be two non-adjacent vertices of G: P (G,λ) = P (G ·
xy, λ) + P (G+ xy, λ).

• Let G include Kr and G′ be obtained from G by adding a new vertex x which is (uniquely) linked
to all vertices of Kr. Then P (G′, λ) = P (G,λ)(λ− r)

• Some known polynomials: P (Kr, λ) = λ(λ− 1) · · · (λ− r + 1); if G is an empty graph of order
n, P (G,λ) = λn; . . .

Any solution of the inequality system [g]T ′ (g, from now on) corresponds in fact to a λ-colouring
of g with λ = |h|, therefore, denoting with Sol(g, λ) the number of solutions of the inequality system,
P (g, λ) = Sol(g, λ).

Lemma 4.4. Let [g]T ′ be a simple tuple-prefix, X ⊂ V ar(g), and gX be a clique. Then, equation (2)
holds and (Corollary 4.2) k = P (g,λ)

P (K|X|,λ)
if λ ≥ |X|, otherwise k = 0, where λ = |hi|, for any hi in T ′.

It is sufficient to observe that for any two distinct λ-colourings of gX there are (obviously) the same
number of λ-colourings of g that include them. Moreover, we know that χKr = r and χg ≥ χgX .

We are always able to reduce a composition to the condition that meets Lemma 4.4 by linking non-
adjacent vertices of gX . Two such vertices are two unrelated variablesXi, Xj ∈ X , therefore we rewrite
T ◦ [g][T ′] into the equivalent sum T ◦ [g∧Xi 6= Xj ]T ′+T ◦ [g∧Xi = Xj ]T ′. Note that g∧Xi = Xj ,
after symbol replacement and removal of redundant inequalities (according to Definition 4.1) exactly
corresponds to g ·Xi Xj .

By recursively rewriting and applying variable substitutions accordingly in T we eventually get sub-
compositions solvable with the lemmas above. Let us instantiate this simple procedure and Lemma 4.4
on the last example.

〈X1, X2〉
T

[X1 6= X3 ∧X2 6= X3]
g

◦ 〈S −X1, S −X1S,−X1〉
T ′

λ = |C| − 1 (> 1)

≡ 〈X1, X2〉[X1 6= X3 ∧X2 6= X3 ∧X1 6= X2] ◦ T ′ + 〈X1, X1〉[X1 6= X3] ◦ T ′

≡ 〈X1, X2〉 ◦ (λ− 2)[X1 6= X2]〈S −X1, S −X1〉+ 〈X1, X1〉 ◦ (λ− 1)〈S −X1〉
≡ (λ− 2)[X1 6= X2]〈S −X1, S −X1〉+ (λ− 1)[X1 = X2]〈S −X1, S −X1〉

where λ− 2 = P (K3,λ)
P (K2,λ)

and λ− 1 = P (K2,λ)
P (K1,λ)

.
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Dealing with an ordered class C. What if predicate g of the filter prefixing tuple T ′ is defined on an
ordered class? In theory, the situation is even simpler because we can always rewrite any inequality into
a disjunction of equalities: for example, if |C| = 3: X1 6=!X2 ≡ X1 =!2X2 ∨ X1 = X2. So, by
expanding T ◦ [g]T ′ accordingly we eventually get a solvable form.

This approach, however, may be inefficient and is not parametric. Therefore, we slightly extend the
technique based on graph-representation of g to ordered classes. The graph representing g now has as
vertices the symbols Symb(g) = {!rXj} occurring in g and as edges, in addition to inequalities in g,
those implied by them: for any two symbols !rXj , !sXj ∈ Symb(g), there is a corresponding edge in
the graph6. In this case, a λ-colouring of g doesn’t necessarily match a solution of the inequality system,
i.e., P (g, λ) ≥ Sol(g, λ),

Due to the circularity of C there are a number of equivalent representations for g. A first result
concerns those cases where g may be expressed in a form such that |V ar(g)| = |Symb(g)|, i.e., for each
variable there is one corresponding symbol. In this case the previous results, in particular Lemma 4.4,
still hold. When |V ar(g)| < |Symb(g)| instead, an extension of Lemma 4.4 is needed.

Lemma 4.5. Let [g]T ′ be a simple tuple-prefix and X ⊂ V ar(g). If a) for each Xi ∈ V ar(g)\X any
two inequalities between X and Xi use the same symbol !rXi and b) gX is a clique, then equation (2)
holds and k = Sol(g,λ)

Sol(gX ,λ)
if Sol(gX , λ) > 0, otherwise k = 0, where λ = |hi|, for any hi in T ′.

We can always rewrite any predicate g so that it meets condition a) of Lemma 4.5. Condition a) is
redundant if |X| = 1.

It is worthwhile pointing out that for the computation of Sol(g, λ), for any inequality graph g, we
can use similar basic techniques as for the chromatic polynomial.

A few examples of applications of the last two lemmas are in Appendix A.4.

4.1.4. Case 4: T [g] ◦ T ′, V ar(T ) ∩ V ar(g) = ∅
. We may reduce this case to one solvable with Lemma 4.1. Indeed, we can express (modulo a tuple
permutation) [g] ◦ T ′ as a Cartesian product 〈[g]rT ′V ar(g), T ′¬V ar(g)〉, where T ′V ar(g) is the image of g
on T ′. If [g]rT ′V ar(g) is simple (therefore, constant-size) we can directly use Lemma 4.1. For instance
(λ = |C|):

〈X1〉[X2 6= X3] ◦ 〈S −X1, S, S〉 → 〈X1〉 ◦ 〈S −X1, [X1 6= X2]〈S, S〉〉 →
λ(λ− 1) · 〈S −X1〉

An example outlining the complete composition procedure is presented in the Appendix A.4.

5. Applications

This section presents two application examples: the symbolic verification of invariants in SN models,
and the reduction of nets by agglomeration of transitions, enabling more efficient qualitative analysis
6Let succmin and succmax be the smallest and largest successor index in the formula; we assume that succmax − succmin <
|C|, so that for each two symbols !rXj , !sXi, and for each c, !rXj(c) 6=!sXj(c); as a consequence we may have consider
different cases, depending on the size of C
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(as in behavior preserving reductions [3, 11]) and quantitative analysis (e.g. elimination of immediate
transitions in Stochastic SN models, extending the technique defined for GSPNs in [1]).

Verification of P and T-invariants P and T-semiflows inducing invariant properties in PNs have been
introduced in mid 80s and extended to HLPN in 90s [13]. Algorithms to compute a generating family
of P and T-semiflows of PN exist [9] and are implemented in several tools; they can be applied to the
unfolding of an HLPN model, while the automatic derivation of high-level (symbolic) P or T-semiflows
is still an open problem, unless restrictions are imposed on the HLPN formalism (as in [12]). Often
the modeler is aware of which invariant properties should satisfy a given model, thus the ability to
automatically check whether a symbolically defined P or T-indexed vector of functions corresponds to
a P or T-semiflow is interesting. The symbolic calculus implemented in the SNexpression tool [7],
extended with the composition presented in this report, allows to implement such automatic check. Let
us illustrate how this can be done on the example net in Fig. 1 (for the sake of space only T-invariants
will be shown).

Definition 5.1. (P/T-semiflow of HLPN models)
Let x be a P-indexed vector of functions with color domain C(x), x[p] : C(p) → Bag(C(x)), p ∈ P ;
x is a P-semiflow if x ◦ C = nullx. A P-semiflow induces a marking invariant since x ◦ m =
x ◦ m0, ∀m reachable from m0.

Let y be a T-indexed vector of functions with color domain C(y), y[t] : C(y)→ Bag[C([t)], t ∈ T ;
y is a T-semiflow if C ◦ y = nully. A T-semiflow defines a (parametric) set of transition instances;
given a color c ∈ C(y) if all the transition instances in y(c) can fire (in any order) starting from marking
m, they bring back the model to the same marking m.

Where nullx is a T-indexed vector of functions such that nullx[t] is a constant function mapping any
c ∈ C(t) into a constant empty Bag on C(x). While nully is a P-indexed vector of functions such that
nully[p] is a constant function mapping any c ∈ C(y) into a constant empty Bag on C(p).

In Table 1 a few P-semiflows and two T-semiflows of the producers-consumers SN are listed. P1
means that the set of producers remains constant, equal to C2, P3 has a similar meaning, but concerns
the Consumers. P2a and P2b are related, in fact they both state that the sum of empty and full positions
in the buffer is constant (equal to |C1|). Observe that the dummy color class C• of cardinality one is used
to indicate plain, black tokens. Finally P4a and P4b indicate that tokens in place start and in places first
and last are related: given the initial marking, either there is a single token in start or a single token in
both first and last.

Let us consider the two T-invariants. Their interpretation is quite simple7: in order to reproduce a
marking the pointers first and last should be increased by one |C1| times, hence the producers should
produce |C1| items and put them into the buffer, and the consumers should get |C1| items from the
buffer. In T1 the same producer fills completely the buffer and a consumer with the same id of the
producer empties it (it represents |C2| invariants in the unfolded net). In T2 any combination of |C1|
producers and |C1| consumers (satisfying the invariant guard g′) is possible.

Let us write down the expressions that allow to verify that those vectors correspond to parametric
P-semiflows: ∀t inT :

∑
p∈P Pi ◦C[p, t] = nullC(Pi). Observe that the function Pi[p] has domain C(p)

7Initialization transition init cannot belong to any T-invariant, while additional invariants involving ProduceBurst exist, but
are not included for the sake of space.
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Place
P1 P2a P2b
C2 C• (|C•| = 1)

Producing (C2) 〈X1
2 〉

Wait to insert (C2) 〈X1
2 〉

buffer (C1, C2) 〈S C•〉
empty (C•) 〈S C•〉 〈S C•〉

full (C•) 〈S C•〉

Place
P3 P4a P4b
C2 C• (|C•| = 1)

start (C•) 〈S C•〉 〈S C•〉
first (C1) 〈S C•〉
last (C1) 〈S C•〉

Wait to extract (C2) 〈X1
2 〉

Processing (C2) 〈X1
2 〉

Transition T1 T2 (Hp: |C1| = 4)
(Domain) C2 C8

2 , C1 [g
′]

Produce (C2) |C1|〈X1
2 〉 〈X1

2 〉+ 〈X3
2 〉+ 〈X5

2 〉+ 〈X7
2 〉

Put (C1, C2) 〈SC1 , X
1
2 〉

∑3
i=0〈!i X1

1 , X
2i+1
2 〉

Get [g](C1, C
2
2 ) 〈SC1 , X

1
2 , X

1
2 〉

∑3
i=0〈!i X1

1 , X
2i+1
2 , X

2(i+1)
2 〉

End Process (C2) |C1|〈X1
2 〉 〈X2

2 〉+ 〈X4
2 〉+ 〈X6

2 〉+ 〈X8
2 〉

g : (X1
2 ∈ C21 ∧X2

2 ∈ C21) ∨ (X1
2 ∈ C22 ∧X2

2 ∈ C22)

p(k) =
∧k
i=0

(∨2
j=1X

2i+1
2 ∈ C2j ∧X2(i+1)

2 ∈ C2j

)
; g = p(0); g′ = p(|C1| − 1)

Table 1. P and T-semiflows of the Producers-Consumers SN

and co-domain C(Pi) (so that the terms in the summation are homogeneous). Instead The expressions
allowing to verify that vectors Tj correspond to parametric T-semiflows are: ∀p ∈ P,

∑
t∈T C[p, t] ◦

Tj [t] = εC(p); the function Tj [t] has domain C(Ti) and codomain C(t), so that the domains of the
functions to be composed are coherent. Observe that T2 represents 625 T-invariants in the unfolded
net when |C1| = 4, |C21| = 1 and |C22| = 2.

Let us consider the formulae that allow us to check P2a. P2a[buffer](X1
1 , X

1
2 ) = 〈SC•〉.

P2a[empty](Xε) = 〈SC•〉. The transitions connected to these two places are Put and Get. So we have
to check whether the following formulas simplify into nullC• :
Put: P2a[buffer] ◦W+(Put, buffer)− P2a[empty] ◦W−(Put, empty) = 〈SC•〉 ◦ 〈X1

1 , X
1
2 〉 − 〈SC•〉 ◦

〈X1
1 , X

1
2 , X

2
2 〉 = C• − C• = nullC• .

Get: - P2a[empty] ◦W+(Get, empty) - P2a[buffer] ◦W−(Get, buffer) = 〈SC•〉 ◦ 〈SC•〉[g]− 〈SC•〉 ◦
〈X1

1 , X
1
2 , X

2
2 〉[g] = C• − C• = nullC•.
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Let us check that the the transitions in each T-invariant produce a null change on all places, starting
with T1.

Producing:
W+(Put,Producing)◦T1[Put]−W−(Produce,Producing)◦T1[Produce] = 〈X1

2 〉◦|C1|〈X1
2 〉−〈X1

2 〉◦
|C1|〈X1

2 〉 = εC1 (the equations for Wait to insert, Wait to extract and Processing are very similar).
Wait to insert:
W+(Produce,Wait to insert) ◦T1[Produce]−W−(Put,Wait to insert) ◦T1[Put] = nullC1 (same as
above)
Wait to extract:
W+(End Process,Wait to extract)◦T1[End Process] -W−(Get,Wait to extract)◦T1[Get] = nullC1

(similar to above)
Processing:
W−(Get,Wait to extract)◦T1[Get] -W+(End Process,Processing)◦T1[End Process] = nullC1 (sim-
ilar to above)
buffer:
W+(Put, buffer) ◦ T1[Put] −W−(Get, buffer) ◦ T1[Get] = 〈X1

1 , X
1
2 〉 ◦ 〈SC1 , X

1
2 〉 − 〈X1

1 , X
1
2 〉[g] ◦

〈SC1 , X
1
2 , X

1
2 〉 = 〈SC1 , X

1
2 〉 − 〈SC1 , X

1
2 〉 = εC1,C2

full:
W+(Put, full)◦T1[Put]−W−(Get, full)◦T1[Get] = 〈SC•〉◦〈X1

1 , X
1
2 〉−〈SC•〉[g]◦〈X1

1 , X
1
2 , X

1
2 〉 = εC•

(the equation for empty is very similar)
first:
W+(Get, first)◦T1[Get]−W−(Get, first)◦T1[Get] = 〈!X1

1 〉[g]◦〈SC1 , X
1
2 , X

1
2 〉−〈X1

1 〉[g]◦〈SC1 , X
1
2 , X

1
2 〉

= 〈SC1〉 − 〈SC1〉 = εC1 (the equation for last is very similar)

T2 has color domain C1, C
8
2 where 8 = 2|C1|, completed by guard g′ (see Table1); and similar for-

mulae as for T1 apply to it, let us consider the expressions for just a few places to illustrate the type of
composition to be solved.

buffer:
W+(Put, buffer)◦T2[Put]−W−(Get, buffer)◦T2[Get] = 〈X1

1 , X
1
2 〉◦(〈X1

1 , X
1
2 〉[g′]+〈!X1

1 , X
3
2 〉[g′]+

〈!2X1
1 , X

5
2 〉[g′] + 〈!3X1

1 , X
7
2 〉[g′])− 〈X1

1 , X
1
2 〉[g] ◦ (〈X1

1 , X
1
2 , X

2
2 〉[g′] + 〈!X1

1 , X
3
2 , X

4
2 〉[g′]+

〈!2X1
1 , X

5
2 , X

6
2 〉[g′] + 〈!3X1

1 , X
7
2 , X

8
2 〉[g′]) = εC1,C2

Wait to insert:
W+(Produce,Wait to insert) ◦T2[Produce]−W−(Put,Wait to insert) ◦T2[Put] = 〈X1

2 〉 ◦ (〈X1
2 〉+

〈X3
2 〉+〈X5

2 〉+〈X7
2 〉)[g′]−〈X1

2 〉◦(〈X1
1 , X

1
2 〉[g′]+〈!X1

1 , X
3
2 〉[g′]+〈!2X1

1 , X
5
2 〉[g′]+〈!3X1

1 , X
7
2 〉[g′]) = εC2

Observe that in all cases where transition Get is involved we have an infix guard g whose terms check
which static sublcass X1

2 and X2
2 belong to: it is easily handled both in T1 (where the involved elements

of the right tuple are equal) and in T2 (where the T-semiflow guard g′ implies that g is satisfied).
Finally, note that depending on the actual binding of the T-psemiflow variables to colors, functions
Tj [Produce] and Tj [End Process] map to aBag+[C2] that may have coefficients greater than one. Hence
the composition presented in this report is required to verify the invariant.
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t

t0

hSi

q : C

r : C

hXi

hXi

hS � Xi

h3i

h3i q : C

r : C

tt0

(|C| � 1).hSi

hXi

h1i

h1, 1i

h1i

h1i h2ih3i

2

h1, 1i

t

C = {1, 2, 3}

h1i

h1i h2i

h1i h2i

h1i

(a.2)(a.1) (a.3)

C = {1, 2, 3}

q : C

tt0

r : C ⇥ C

hX1, X2i

(b.3)(b.2)

t0

q : C

r : C ⇥ C

hX1, X2i

hX1 + X2i
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(b.1)

h!Xi 2hSi � h!�1X1i+

h1, 3i
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h2i

h1, 2i

h1, 2i

h3i h2i

h3i

�h!�1X2i

p : C p : C

h1i h2i h3i

ordered

Figure 2. Agglomeration: .1 Original SN; .2 Unfolded subnet; .3 Reduced folded net.

Reduction of transitions Another application of multiset composition in coloured PN is structural re-
duction. For instance, in [11] a symbolic reduction technique (based on the capability to syntactically
solve the composition) is applied to models used for software verification. To allow for a symbolic treat-
ment, the authors propose Quasi-well formed Nets, a tight restriction of SNs. Moreover, the syntactical
arc function composition requires further restrictions on the shape of manageable arc functions.

Transitions agglomeration is a useful reduction: it consists of merging causally connected transitions.
The aim is to reduce transition instances interleaving, preserving specific system properties. A number of
techniques have been proposed, with different properties and applicability conditions. Common to most
proposals is this applicability scenario: a set H of transitions put tokens into a place p, leading to a new
marking of p from which it is possible to restore its initial state only through the firing of a newly enabled
transition t′; in that case, the firing of any transition in H may immediately cause the firing of t′, without
interfering with any other transition firing. In this report, we do not propose a general agglomeration
technique for SN, rather, we illustrate how to perform agglomeration by symbolically deriving the arc
functions for the new transition. We also provide an intuitive structural condition on SN arc functions,
which ensures the applicability of agglomeration in a limited set of cases.

Figure 2(a.1) shows a simple example where the transitions t and t′ can be agglomerated. Figure
2(a.2) depicts a part of the net unfolding connected to the instance 〈1〉 of t. It is possible to see that,
if p is initially empty, after the firing of instance 〈1〉 of t, we can safely fire immediately all the newly
enabled instances of t′ restoring the p empty state. This is true for any instance 〈i〉 of t. Figure 2(a.3) is
the reduced colored subnet, where the size of class C is a parameter.

The reduced subnet can be obtained without unfolding it: indeed, for this type of agglomeration, the
following formula allows to symbolically compute the arc functions of the reduced subnet8:

W−(tt′, r) =W−(t, r); W+(tt′, q) =W+(t′, q) ◦W−(t′, p)t ◦W+(t, p)

8W−(t′, p)t : C(p) → Bag[C(t)] denotes the transpose of W−(t′, p); the rules to symbolically compute the transpose of an
arc function are defined in [4].
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In W+(tt′, q) the rightmost composition provides the instances of t′ enabled by the firing of an instance
of t, through p. Finally composingW+(t′, q) with this result (firing t′ for all those instances) we obtain a
function providing the multiset of tokens to be added in q. For the example of Fig.2(a)W−(tt′, r) = 〈X〉,
while:

W+(tt′, q) = 〈S −X〉 ◦ 〈X〉t ◦ 〈S〉 = 〈S −X〉 ◦ 〈S〉 = (|C| − 1).〈S〉 |C|=3
= 2.〈S〉

Figure 2(b.1) shows another example of reduction. The formula for the agglomeration can be also used
here. The agglomeration is valid for any |C| ≥ 2: W+(tt′, q) = 〈S − X〉 ◦ 〈!X〉t ◦ 〈X1 + X2〉 =
〈S − X〉 ◦ 〈!−1X〉 ◦ 〈X1 + X2〉 = 〈S − X〉 ◦ 〈!−1X1+!−1X2〉 = 〈S−!−1X1〉 + 〈S−!−1X2〉 =
2.〈S〉 − 〈!−1X1〉 − 〈!−1X2〉

For these examples where p is the only input place of t′ and is the only output place of t, we can
confidently state that if (1) the instances of transition t′ are not in conflict with each other (a situation
called auto-conflict, which can be checked symbolically on the net structure) and (2) if all the tokens
put into p by t can be completely consumed by (one or more instances of) t′, then we can aggregate
t and t′. To verify the second condition it is sufficient to check the following equality: W+(t, p) =
W−(t′, p) ◦W−(t′, p)t ◦W+(t, p). The following property characterizes the form for the input function
W−(t′, p) which guarantees the agglomeration conditions(s). Let the identity on D be IdeD(d) = 1 · d,
∀d ∈ D.

Property 18. Let C(p)′ =W+(t, p)(C(t)) be the (support of the) image of W+(t, p).

W+(t, p) =W−(t′, p) ◦W−(t′, p)t ◦W+(t, p) ⇔ ∀c ∈ C(p)′ W−(t′, p) ◦W−(t′, p)t(c) = 1·c

(i.e. the restriction of W−(t′, p) ◦W−(t′, p)t to C(p)′ is the identity).
Observe that with the assumption that p is the unique intermediate place between t and t′, this prop-

erty includes also the condition of no autoconflicts among t′ instances ( =W−(t′, p)t ◦W−(t′, p)−Ide,
simplified formula from [5]).

The condition holds for both the examples discussed above, and this can be checked symbolically
exploiting the composition presented in this report.
Finally, let us consider a third example, fully exploiting the composition technique presented in this
report. The subnet schema is the same but for t′, which has one more output place, q′. The arc functions
for this example are:

W−(t, r) = 〈X〉 W+(t, p) = 〈S−!X,S, S −X〉 W+(t′, q) = 〈!X2, X2〉[X1 = X3]

W−(t′, p) = 〈!X3, X2, X1〉 W+(t′, q′) = 2 · 〈X1, X2〉[X1 6= X2 ∧X2 6= X3]

The arc functions for the agglomerated transition tt′ are (λ = |C| with |C| > 2):

W−(tt′, r) = 〈X〉 W+(tt′, q) = (λ− 1)[X1 =!X2]〈S, S〉
W+(tt′, q′) = 2(λ− 1)〈S −X,X〉+ 2(λ− 2)[X1 6= X2]〈S −X,S −X〉

The details of the derivation of W+(tt′, q′) follows, with the indication of the involved Lemma in
each step. Let λ = |C| (|C| > 2): W+(tt′, q′) =W+(t′, q′) ◦W−(t′, p)t ◦W+(t, p).
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W+(tt′, q′) = 2 · 〈X1, X2〉[X1 6= X2 ∧X2 6= X3] ◦ 〈!X3, X2, X1〉t ◦ 〈S−!X,S, S −X〉

= 2 · 〈X1, X2〉[X1 6= X2 ∧X2 6= X3] ◦
transpose

〈X3, X2, !−1X1〉 ◦ 〈S−!X,S, S −X〉

= 2 · 〈X1, X2〉[X1 6= X2 ∧X2 6= X3] ◦
Lemma 4.2

〈S −X,S, S −X〉

= 2 · 〈X1, X2〉
Definition 4.1 (Claim 1)

[X1 6= X2 ∧X2 6= X3] ◦ 〈S −X,S −X,S −X〉
+ 2 · 〈X1, X2〉 ◦ 〈S −X,X, S −X〉

= 2 · 〈X1, X2〉
Corollary 4.2, Lemma 4.4

(λ− 2)[X1 6= X2] ◦ 〈S −X,S −X〉+
Lemma 4.1, 4.2

2(λ− 1)〈S −X,X〉

= 2(λ− 2)
Lemma 4.3

[X1 6= X2]〈S −X,S −X〉+ 2(λ− 1)〈S −X,X〉

6. Conclusions and future work

This report reaches the goal of completing the symbolic manipulation of SN arc functions defining a
procedure for the composition of functions mapping on Bags. This enables a number of applications
that couldn’t be treated with the operations defined so far. The implementation of a new version of
SNexpression including this kind of composition is ongoing. The approach suggests an extension to the
SN formalism itself, to allow filters in arc expressions: this feature is now implemented in the GreatSPN
Graphical User Interface. The presented results are often parametric in color class cardinality, possibly
with some constraints on cardinality lower bounds.

Future work is devoted to extend the possible applications of the results presented in this report, in
particular as concerns a generalization of net reduction methods proposed in literature to a wider class
of nets: for instance, we expect that our proposal may allow to relax some restriction posed in [11].
Another interesting topic is the elimination of immediate transitions in Stochastic SNs (to be able to
apply analysis algorithms which do not work in presence of immediate transitions): this is a challenging
problem since in general it may involve marking dependent sequences of immediate transition firings
triggered by one timed transition, as in the case of the example in Fig. 1.
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A. Appendix

In this appendix the reader can find formal proofs of the Properties and Lemmas presented in the report,
some relevant guard/filter reduction rules, generalization of Case 3 (Sec. 4), and a complete example of
composition procedure application.

A.1. Proof of Properties and Lemmas

Proof of Property 3.: composition of a constant and a constant-size function.
The equality is trivially verified for any a : g(a) = false. Consider a: g(a) = true. Let c ∈ Bag[D] be
the image of f : f ◦ h(a) =∑x∈h(a) h(a)(x) · c = n · c. �
Proof of Property 4: composition of a tuple including a constant.
Let c ∈ Bag[D] be the image of f ′, we have:
〈f, f ′〉 ◦ h(a) =∑x∈h(a) h(a)(x) · 〈f(x), c〉. By exchanging the sum and the product we get
〈∑x∈h(a) h(a)(x)f(x), c〉 = 〈f ◦ h, f ′〉(a). �
Proof of Lemma 4.1: elimination of right tuple elements not in the image of X .
Let T ′ = 〈T ′

X
, T ′¬X〉. Based on Property, 10 it sufficient to show that:

T ′¬X [g
′] constant-size, |T ′¬X | = k ⇔ ∀a ∈ D′′ g′(a)⇒ ΠX ◦ T ′(a) = k · T ′

X
(a).

Let a ∈ D′′, g′(a) = true. Then T ′(a) = 〈T ′
X
(a), T ′¬X(a)〉 and T (T ′(a)) =

∑
a1∈T ′

X
(a),a2∈T ′¬X(a) T

′
X
(a)(a1)·

T ′¬X(a)(a2)T (〈a1, a2〉). Since T (〈a1, a2〉) = T r(a1), by replacing in T (T ′(a)) we get:∑
a1∈T ′

X
(a),a2∈T ′¬X(a) T

′
X
(a)(a1) · T ′¬X(a)(a2)T

r(a1).

Rewriting it as:
∑

a1∈T ′
X
(a) T

′
X
(a)(a1) · (

∑
a2∈T ′¬X(a) T

′
¬X(a)(a2)) · T

r(a1), since the inner sum is k

(Hp), the whole expression becomes k · T r ◦ T ′
X
(a). �

Proof of Lemma 4.2: composition of independent subtuples.
Without loss of generality, let h = 2, T ′ = 〈T ′1, T ′2〉, T ′1 = T ′

X1
, T ′2 = T ′

X2
. Consider a ∈ D′′.

T (T ′(a)) =
∑

a1∈T ′1(a),a2∈T ′2(a)
T ′1(a)(a1)·T ′2(a)(a2)T (〈a1, a2〉). T (〈a1, a2〉) = 〈F1(〈a1, a2〉), F2(〈a1, a2〉〉

= 〈F1
r(a1), F2

r(a2)〉.
Replacing in T (T ′(a)) we get:∑

a1∈T ′1(a),a2∈T ′2(a)
T ′1(a)(a1) · T ′2(a)(a2)〈F1

r(a1), F2
r(a2)〉 = 〈F1

r ◦ T ′1, F2
r ◦ T ′2〉(a). �

Proof of Property 11: constant size simple tuple-prefix.
Let T = ⊗rfr. It directly comes from the fact that for any two color-tuples c, c′ ∈ D, and for any clause
eq : Xi 6=!sXj in g, we have: fi(c) =!sfj(c), fi(c′) =!sfj(c

′), and |fi(c)| = |fi(c′)|, i.e., the number of
color-tuples which satisfy g is the same in T (c) and T (c′). �
Proof of Property 13: projection repetition (unordered class).
〈X1, . . . , X1〉 ◦ h(a) =

∑
ai∈h(a)〈ai, . . . , ai〉 = [

∧
i:2...mX

1 = Xi]〈h, . . . , h〉(a). �
Proof of Property 15: projection repetition with one occurrence of S −X1.
Let Er, El be the right- and left-hand expression, respectively.

Er(a) = [. . .]〈h(a), . . . , h(a), S〉 Hp
= suma′∈h(a)〈a′, . . . , a′, S − a′〉 = El(a). �

Proof of Property 16: one projection with S −X1.
[X1 6= X2]〈h, S〉(a) =∑a′∈h(a) h(a)(a

′)〈a′, S − a′〉 = 〈X1, S −X1〉 ◦ 〈h(a)〉. �
Proof of Corollary 4.2: Infix predicate elimination (case 3: X ⊂ V ar(g)).
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The first equality is just a term substitution (property 10). As for k, it follows from |ΠX ◦[g]T ′| = |[g]T ′|
(given that [g]T ′ is constant-size also its projection is, accordingly) and from [gX ]

rT ′
X

being constant-
size by construction. �
Proof of Property 18: transition agglomeration condition.
⇐ is obvious. As for⇒, assume that there exists x ∈ C(t) such that W+(t, p)(x) = b 6= ε, for which it
holds W−(t′, p) ◦W−(t′, p)t(b) 6= b. We get a contradiction. �

A.2. Filter base reduction rules

The rules below, when recursively applied, make filters prefixing tuples meet the 1st condition of Defini-
tion 4.1. Symbols∩,	 (used only in this context) denote set-intersection/difference, e, f any elementary/class-

function, respectively. We assume that !hXi =!kXi h6=k→ false.
Elementary intersections/differences.

S ∩ e→ e Si ∩ Sj i 6=j→ ∅ Xi ∩ Si → Xi[Xi ∈ Ci] !hXi∩!kXj →!hXi[Xi = !h−kXj ]

e	 S → ∅ Si 	 Sj i 6=j→ Si Xi 	 Si → Xi[Xi /∈ Ci] !hXi	!kXj →!hXi[Xi 6= !h−kXj ]

S 	 e→ S − e

Reduction of filter predicates (in decreasing order of priority)

[. . . , Xi ∈ Ck]〈. . . ,
∑

j λjej
i

, . . .〉 → [. . .]〈. . . ,∑j λj(ej ∩ Sk)
i

, . . .〉

[. . . , Xi /∈ Ck]〈. . . ,
∑

j λjej
i

, . . .〉 → [. . .]〈. . . ,∑j λj(ej 	 Sk)
i

, . . .〉

[Xi = !kXj , . . .]〈. . . , e
i
, . . . ,

∑
h λheh
j

, . . .〉 |e|=1→ [. . .]〈. . . , e
i
, . . . ,

∑
h λh(eh∩!−ke)

j

, . . .〉

[Xi 6= !kXj , . . .]〈. . . , e
i
, . . . ,

∑
h λheh
j

, . . .〉 |e|=1→ [. . .]〈. . . , e
i
, . . . ,

∑
h λh(eh	!−ke)

j

, . . .〉

[Xi = !kXj , . . .]〈. . . , e
i
, . . . , e′

j
, . . .〉 |e|>1∧|e′|>1∧e 6≡!ke′→ [Xi =!kXj ]〈. . . , e∩!ke′

i
, . . . , e′∩!−ke

j
, . . .〉

[Xi 6= !kXj , . . .]〈. . . , e
i
, . . . , e′

j
, . . .〉 |e|>1∧|e′|>1∧e 6≡!ke′→ [Xi 6= !kXj ]〈. . . , e∩!ke′

i
, . . . , e′∩!−ke

j
, . . .〉+

[. . .]〈. . . , e	!ke′
i

, . . . , e′
j
, . . .〉+

[. . .]〈. . . , e
i
, . . . , e′	!−ke

j
, . . .〉

[Xi 6== !kXj , . . .]〈. . . ,∑k λkek
i

, . . . ,
∑

h λ
′
he
′
h

j

, . . .〉→ ∑
k,h λkλ

′
h[X

i 6== !kXj , . . .]〈. . . , ek
i
, . . . , e′h

j

, . . .〉

Remark. In rules 3 through 6, we may actually replace (elementary) symbols e, e′ with any type-set
(considering also the tuple guard) class-functions f =

∑
h λheh, f ′ =

∑
k λ
′
ke
′
k. We have, f ∩ f ′ =∑

h,k λhλ
′
keh ∩ e′k, and f 	 f ′ = f − f ∩ f ′.
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Sol(g′ +X1 6= !X3, λ) = λ(λ− 2)2 − λ(λ− 2) = λ(λ− 2)(λ− 3)

Figure 3. An example of incremental computation of Sol(g, λ)

A.3. Examples of Case 3 with ordered classes

Consider the following composition, meeting Definition 4.1. It is a representative case, because when an
ordered class is involved we can always reduce to simple tuple-prefixes where the right tuple T ′ contains
uniquely the diffusion-function S. Note that g cannot be expressed so that |V ar(g)| = |Symb(g)|.

〈X1, X2〉[X1 6= X2 ∧X1 6= X3 ∧X2 6=!−1X3] ◦ 〈S, S, S〉 |C| > 2

However, we may conveniently rewrite it as:

〈X1, X2〉
T

[X1 6= X2 ∧X1 6= X3 ∧X3 6=!X2]
g

◦ 〈S, S, S〉
T ′

|C| > 2

In this equivalent form, any inequality between V ar(T ) variables X = {X1, X2} and X3 involves the
same symbol (X3). This makes it possible to apply Lemma 4.5. The sub-graph gX , X = {X1, X2},
whose vertices are {X1, X2, !X2}, becomes a “clique” by linking X1 to !X2, considering the implicit
inequality X2 6= !X2.

T [g]T ′ ≡ 〈X1, X2〉[g ∧X1 6= !X2] ◦ T ′ + 〈X1, !−1X1〉[X1 6= X3] ◦ T ′

≡ 〈X1, X2〉 ◦ (λ− 2)[X1 6= X2 ∧X1 6= !X2]〈S, S〉+ 〈X1, !−1X1〉 ◦ (λ− 1)〈S〉
≡ (λ− 2)[X1 6= X2 ∧X1 6= !X2]〈S, S〉+ (λ− 1)[X1 = !X2]〈S, S〉

λ − 2 is the ratio λ(λ−2)2
λ(λ−2) , where numerator and denominator refer to g′ := g + X1 6= !X2 and its

restriction to X (the clique {X1, X2, !X2}), respectively. Analogously, λ− 1 is the ratio λ(λ−1)
λ , where

numerator and denominator refer to g′′ := g ·X1 !X2 (whose simple form results in X1 6= X3, X1 =
!X2) and its restriction to X (the 1-order empty graph {X1}), respectively.

For the computation of Sol(g, λ), it may be convenient to rephrase the fundamental reduction the-
orem used for the computation of P (g, λ) as follows: let x, y ∈ V ar(g) and e := x 6= !ry, e /∈ g:
Sol(g + e, λ) = Sol(g, λ) − Sol(g · x !ry, λ), where g · x !ry is the graph isomorphic to the predicate
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obtained from g by replacing the occurrences of x with !ry, and removing redundant edges: indeed,
x = !ry ⇒ x 6= !sy, ∀s 6= r (assuming |s− r| < |C|).

Fig. 3 shows another application of the reduction theorem above: the goal is to compute Sol(g, λ)
where g = [g′ ∧X1 6=!X3], given that Sol(g′, λ) = λ(λ− 2)2 and Sol(g′′, λ) = λ(λ− 2) are known.

A.4. Example of a complete composition procedure

Fig. 4 shows the main steps of a complete composition procedure where most of properties and lemmas
apply: C1 is a partitioned class, C2 is ordered.

Prop. 4

Lemma 1

Lemma 2 + Cartesian prod.

membership clause reduction 
inequality reduction + distrib. prop.

(Definition 6)

Lemma 2

Prop. 3 + distrib.
prop.

Lemma 1

Prop. 16

Corollary 2 +
Lemma 5

Prop. 16

composition's final result

Figure 4. A complete composition example


