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Abstract

We propose a framework for the evaluation of cyberattack detection systems in which
methodological results can be tested in a realistic setup. We emulate a power control in-
frastructure, an attacker and a monitoring systems. In this controlled environment, through a
modular approach, it is possible to evaluate a variety of detection models: we inject adversarial
activity, collect logs from the systems, analyze such logs and produce evidences that are later
processed by artificial intelligence models that can raise alerts, and give diagnostic or predictive
information. The testbed allows us to effectively test the adequacy of the detection mechanisms;
currently, it includes man-in-the-middle attacks and false data injection.

1 Introduction

Power systems are critical assets whose disruption can cause significant damage to the society
investing all aspects, including human lives. Moreover the digitalisation of the power infras-
tructure allows the implementation of new functionalities (i.e. distributed energy resources,
electric vehicle charging infrastructure, demand response, etc.) in order to better manage the
power grid, but poses new challenges in terms of cybersecurity: the interaction of new actors by
means of heterogeneous and third party networks widens the attack surface and every day new
zero day vulnerabilities are discovered. Hence, it is crucial that any adversarial activity against
the systems is detected as early as possible, enabling the adoption or strengthening of defense
measures. Following the European Network and Information Security Directive 2016/1148,
currently under review, the Member States have to ensure that essential entities, e.g. energy
operators, take appropriate measures to manage the cybersecurity risks, including the adoption
of methodologies to detect attacks and to actuate fast response and defense actions.

In this setting, we present a framework for the evaluation of cyberattack detection systems
developed within a cooperation between researchers at the Università del Piemonte Orientale
and at Ricerca sul Sistema Energetico, a company carrying out research activities in the electro-
energy sector in national strategic projects of general public interest. Our research activity is
aimed at the development of effective cyberattack detection tools for the energy systems, based
on Artificial Intelligence methodologies. In a critical context such as the energy infrastruc-
tures, testing detection tools on fully operational infrastructures is unfeasible, and therefore
a significant part of our activity is the design and implementation of a framework in which
methodological results can be tested in a realistic setup.

In this report we refer to a scenario illustrated in Figure 1, considering Distributed Energy
Resources (DERs). The power infrastructure evolution supported by new Information and
Communication Technology (ICT) solutions allows the implementation of new functionalities
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Figure 1: Use case.

with the involvement of new actors as for example the Significant Grid Users (SGUs). The
increasing importance of the diffusion of the DERs requires to rethink the control logic including
information coming from the field and controlling DER functions in terms, for instance, of
reactive power. Communications need to be implemented from and to the energy resources
(see Fig. 1) in order to collect measures and send commands. This information exchange can
be implemented by means of heterogeneous and third party communication channels, hence
they are prone to cyber security issues. National and international normative are working on
standards to regulate the components and required communications.

In this report we first survey some related works, then we introduce the framework, explain-
ing how attackers are emulated, giving an overview of the attacks that we implemented and
describing the way we integrated detection models. Next the representation of the possible at-
tacks using probabilistic graphical models (Dynamic Bayesian Networks - DBNs) is illustrated
on a small but realistic example: the results that can be obtained by solving the DBNs are
discussed and their possible use for monitoring the system is explained.

2 Related work

The idea of a testbed for Intrusion Detection Systems (IDS) in the environment of power control
systems is not new, given the risk of conducting tests on a critical system.

The testbed structure proposed in [10] is quite articulated and various protocols are con-
sidered. But the attacks are injected in the system by altering traffic traces (.pcap files) and
the goal is to test a machine learning based IDS. In contrast we propose a testbed in which an
attacker is emulated, and therefore the malicious traffic produced is more realistic. Moreover
the modularity of our approach enables the testing of different detection systems, to inject entire
attack processes and to test early detection and forecast of adversarial actions.

In [8], a testbed for intrusion detection in an electricity generation and distribution control
system is presented. In this case traffic is captured at the boundaries of a real Industrial Power
System and comprises corporate and Operational Technology (OT) traffic. The testbed was
used to verify the quality of a protection system [9]. IP traffic obtained from real control and
supervisory substations was injected into the testbed domains. Hostile traffic was simulated as
malformed traffic. This approach can detect traffic anomalies but is not geared at recognizing
an attack process.

Another testbed for intrusion detection in the power grid is presented in [20]. In this case,
the authors propose detection through a module that simulates the grid and compares measures
reported with “ideal” data it computed. They simulate attacks by actually installing malware.
Their focus is on single attacks and not on processes and the detection takes place when the
attacker is already succeeding in destabilizing the grid.

2



An older approach is in [11]. Here the computer networks and the power grid are simulated.
The detection tool is an anomaly detection tool, trained to recognize normal traffic in the net
and to raise an alarm when the traffic is anomalous.

A much broader project is the US National SCADA Test Bed [15] to address cyber security
issues of energy delivery systems. The project was started in 2003 and encompasses a number
of subprojects such as quantum key distribution, risk assessment, removing certain classes of
attackers, protocol compliance, development of control system standards.

The approach presented in [16] refers to an actual IDS (DETECT), rather than a testbed,
however it is related with our proposal since Bayesian Networks derived from Attack Trees are
used as models to recognize attacks as they evolve: events are gathered and monitored (within
a given time frame), and observations are used to update the BN parameters. The model is
solved after any event-driven update and may produce an attack warning or alarm. In our case
Dynamic BNs derived from attack graphs are used in a similar way to detect emulated attacks.

For completeness, let us stress that testing IDSs is a problematic issue. Delving into this is
out of the scope of this chapter, and we refer to a classical survey for an interesting analysis [12].

As will become clear in the following, our methodology and framework consist of coordinated
components, such as the attack graph (see e.g. Figure 5), the selection of the attacks that the
synthetic attacker will carry out (see Section 3.1) and the model (see Figure 8). In order
to make the framework more flexible, allowing automated derivation of the three components
of the attack/detection workflow, it would be useful to formalize attack scenarios by using
some domain specific language. This formalization would allow us to derive in a coordinated
way attack graphs of adversarial processes and, on the practical level, both the specifications
to drive the emulated attacker and the corresponding detection models, thus supporting the
development of more complex testbed scenarios. A good candidate domain specific language
is that proposed in [6]: in this case the MAL language integrates the description of assets
(servers, software, network components, ...) and of possible attack techniques (mainly derived
from MITRE ATT&CK) that may apply to each asset, and possible coutermeasures. From the
integration of such specification with the description of the assets composing the IT (or OT)
infrastructure under study, attack graphs can be derived automatically and used to customize
the testbed for experimenting with different scenarios.

3 The framework

Our framework is part of a testbed that reproduces a power control infrastructure where the
focus is on communication implemented by standard protocols as IEC 61850 and IEC 60870-5-
104. Figure 2 represents a diagram of the main control communications involved in the testbed:

Figure 2: Testbed communications

the Distributed Energy Resources (DERs) send measures to a primary substation (arrow 1 in
the figure) where control functions (e.g. voltage/frequency control) are executed and setpoints
evaluated. These are then sent back to DERs (arrow 2 in the figure) in order to be applied.
The communications are implemented by IEC 61850 standard.

The primary substation aggregates the measures coming from the DERs, integrates them
with other power values and sends the data to a Control Center (arrow 3 in the figure). Here
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higher level control functionalities are performed and commands could be forwarded to the
primary substation (arrow 4 in the figure). The IEC 60870-5-104 protocol is used.

In this chapter the focus is on DER control (see Section 3.2): the communications are
implemented by means of the MMS (Manufacturing Message Specification) protocol as defined
in IEC 61850-8-1 standard. At the substation the MMS client is active and is connected with
the MMS server placed at the DER site (see Fig. 3).

Figure 3: MMS communication

In this emulated environment, we inject adversarial activity, collect logs from the systems,
analyze such logs and produce evidences that are later processed by models that can raise
alerts, and give diagnostic or predictive information (see Fig. 4). The whole framework enables
us to effectively test the adequacy of the detection mechanisms, comparing final results with
the attacks we generated.

Figure 4: The logical architecture.

The adversary side is based on the tool Metasploit and it can emulate different behaviours,
to render more aggressive or more naif attack attempts. It is capable of taking advantage of
all the choices offered by Metasploit in terms of attacks, but we have also implemented more
power-specific threats. Thus the malicious traffic is created in a realistic way.

The monitoring observes activity in the target network. Log data is conveyed to an Opensearch
database which implements analytics, filtering the information it receives and raising alarms
when specific events take place or defined thresholds are exceeded.
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Such alarms are conveyed to the detection models through a Kafka broker, whose aim is to
ensure modularity of the framework. It enables us to feed the same data to different models in
order to compare their effectiveness for the different tasks of interest, such as early detection
of adversarial activity, diagnosis of the attack steps carried out so far, prediction of most likely
evolution of the attack processes.

The models we have so far integrated in the framework are probabilistic graphical models,
in particular Bayesian Networks (BN), both static and dynamic (DBN) (see Section 4).

3.1 The attacker

In order to test the detection systems with complex attack processes, we implemented an auto-
matic adversary. Our adversary is fully automated in the sense that it is capable of carrying
out entire attack processes without the need of human intervention.

We wanted to mimick through our attacker different adversarial profiles, to test our
detection tools in various settings, ranging from uninformed adversaries to very precise ones
that know very well the network they attack.

We worked at making it modular and expandable in order to enrich over time the pool
of attacks that can be carried out, with the specific aim of specializing increasingly over time
our tool for power systems.

We opted for an open source tool, built over well established open source software, to
provide a tool that can be of use to the community at large.

We could not use directly for our aims open source tools readily available because our aim
is different from the usual one: attack tools are normally used for penetration testing. On the
contrary, we know well the vulnerabilities of the network we emulate. Instead, we want to carry
out those attacks in order to test our monitoring and detection tools. The environment in this
sense is much more controlled: we know in advance what the attacker can achieve and this is
key for validating the defense mechanisms.

We built our adversary around Metasploit, that has become the toolbox of our adversary.
Some of the implementation choices we made, resulted in constraints on the emulated network,
but we adhered to some basic principles in order to be able to retrieve realistic data through
the monitoring system. These principles can be summarized as emulating and using actual
software on victim machines, including the network stack, and carrying out real attacks on
these machines.

3.2 Attacks

The design of our attacks and of the detection models is framed as much as possible in the
MITRE ATT&CK classification [21], in order to maintain a common language shared in other
research approaches and for adherence to real world scenarios, since the MITRE project itself
is based on data from known attacks or adversarial software.

In this context, we also developed attacks specific for the power world, that implement
techniques from the ICS ATT&CK matrix [22]. Moreover we implemented attack steps from
the Containers ATT&CK matrix [23].

The full attack process chosen as a testbed considers an attacker that, having initially
compromised a workstation in the corporate network, moves laterally through the DMZ to
finally compromise a computer in the Operational Technology (OT) network, and from there
proceeds to make the system unstable.

The final portion of the attack process we developed injects false data in the system: to
this end, a Man in the Middle (MITM) attack to a IEC 61850/MMS over TLS connection is
performed in the power control environment.

Our methodology consists in first designing attack processes that we express through Attack
Graphs (AGs). Then on one side we implement the attacks for the synthetic attacker and on
the other we implement monitoring sensors. The sensors must be realistic and not specifically
targeted for the attack steps we selected: for instance we monitor the integrity of relevant
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configuration files or directories, but we do not search for traffic patterns that expose one single
exploit. On the basis of the AG, we also design the detection models.

Figure 5: Man in the middle to MMS-over-TLS and related analytics

Figure 5 depicts an Attack Graph (AG) describing in detail the Man-in the-middle attack.
Nodes denote states reached by the attacker and edges are labelled by attack steps. For each
attack step we first indicate the MITRE ATT&CK tactic it aims at, in parentheses the specific
technique, and then we detail the actual implementation of that technique. The tactic name
is introduced by a code indicating the specific ATT&CK project we refer to; in Figure 5 some
tactics are from the Enterprise ATT&CK matrix (ENT) and some are from the ICS one. So for
instance, the edge labelled “ICS - Collection (Man-in-the-middle): attackers perform a man-in-
the-middle splitting MMS-over-TLS connection” indicates an implementation of the technique
Man-in-the-middle for the tactic Collection of the ICS matrix. In particular, the MITM attack
is implemented splitting MMS over TLS.

The node labelled “unstable power system” is the attackers’ goal that can be reached fol-
lowing two different attack paths: either the attackers modify reporting messages or commands.
In the latter case, they can issue a wrong command that causes malfunctioning of the device
driven by the MMS server. If on the other hand they alter reporting messages, the control
center will have an incorrect view of the system’s state. This might prompt reactions that can
cause system’s instability. A reaction to an altered view is not properly an attack step, and
therefore it appears in the AG as a dotted arrow, but it is an action that the attackers count
on to reach their target.

The yellow comments on some edges denote analytics to expose the attack. In this case four
analytics are proposed. The one on the leftmost edge raises an alarm in case of access to the file
containing the client’s private key. Integrity check on the CA bundle (on the second edge from
the left) is very important because any change to that file implies modified trust. The analytics
on the rightmost edges are at application level: they check coherence over time of the measures
received or of the commands issued.

The first portion of the whole process is a more classical lateral movement attack that
proceeds scanning the network to identify possible victims and then exploits vulnerabilities of
a mail server. Through these steps the attacker that has initially compromised a computer
in the corporate network, most likely using standard phishing techniques, moves to the DMZ
between corporate and OT networks. These attack steps are described in Figure 6. Notice that
all techniques here are from the Enterprise ATT&CK matrix.

Perhaps more interesting is the attack to the containerization software; the subprocess is
detailed in Figure 7: after compromising, with standard vulnerability exploitation, a container
on a machine of the OT network, the attackers are able to escape from the container and take
control of the whole host machine. Notably, they take control of all the containers running on
the host, including the MMS client target of the attack in Figure 5. In Figure 7 most tactics
are from the MITRE Container ATT&CK matrix (code CONT).

Whereas the emulated attacker is directed to pursue these specific attack paths, it is imple-
mented to embed the attack processes that will be successful more realistically into a swarm
of alternative attempts that are bound to fail, but create further challenges to diagnostic and
predictive analyses.
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Figure 6: Lateral movement, with analytics

3.3 Integration of detection models

The monitoring system collects data from the network and conveys them to the Opensearch
database. Here a pipeline filters the data and tests them against parameter thresholds or other
specific conditions, configured according to the analytics that have been planned to expose
possible attacks. When evidences of suspicious activity are detected, the alerts are forwarded
to the detection models through a Kafka broker, on a specific topic.

Kafka consumers read the evidences and forward them to the detection models. As antici-
pated, we have so far integrated only (D)BN models, and so we describe here this integration.
Our software includes a Kafka consumer that reads a Kafka topic at regular intervals (that map
to the instants t in the DBN), collects them in a file according to a format that is compatible
with Octave [5]. Then the program starts the DBN analysis: evidences are read from the file
and one of the possible inference tasks are executed (see Section 4.2.1).

As the (D)BN manager receives new evidences, it starts a new analysis of the model.
The results produced by any model can be visualized in two ways. The most direct visual-

ization is on a browser: an html file containing the data is produced, and this file can be viewed
thanks to a Tomcat [7] server integrated in the framework. On the other hand, data are also
redirected through Kafka back to Opensearch, where they can be visualized using Opendash-
board. This option is more flexible, since one can implement different dashboards, depending
on the specific purpose of the analysis.

4 Probabilistic graphical models

The detection models we have so far integrated in the framework are Bayesian Networks (BNs),
which are defined by a directed acyclic graph where a node corresponds to a discrete random
variable having a conditional dependence on its parent nodes. Dynamic Bayesian Networks
(DBNs) extend BNs by providing an explicit discrete temporal dimension.

4.1 Bayesian Networks

Bayesian Networks (BN) (also known as Belief Networks) [17] are a widely used formalism
for representing uncertain knowledge in Artificial Intelligence. They have then gained a great
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Figure 7: Attack to escape from a container, with analytics

popularity in the reliability field as well, because of their flexibility in modeling and analysing
dependable systems [18].

A Bayesian Network (BN) is a pair N = ⟨⟨V,E⟩, P ⟩ where ⟨V,E⟩ are the nodes and the
edges of a Directed Acyclic Graph (DAG) respectively, and P is a probability distribution over
V . Discrete random variables V = {X1, X2, . . . Xn} are assigned to the nodes, while each edge
e ∈ E from node X to node Y represents a probabilistic relationship between the variables
represented by X and Y , where Y directly depends on X. This interpretation allows us to
factorize the joint probability of the variables of the model, by considering only the conditional
distribution of each variable with respect to their parent variables in the DAG, as shown in
equation 1.

P [X1, X2, . . . , Xn] =
n∏

i=1

P [Xi|Parent(Xi)] (1)

In the standard case of discrete variables, each local distribution can be described in tabular
form (i.e., a column for each combination of states of the parent variables), called Conditional
Probability Table (CPT).

Because of the availability of the joint probability distribution, any kind of probabilistic
query of the form P (Q|e) can be computed, where Q is any set of unobserved variables and e
is a configuration of a set of observed variables called the evidence.

Although we have integrated also static BN models in our framework, we concentrate in
the following on dynamic models, because they are more interesting, allowing more informative
analyses, especially when used to approximate continuous models.

4.2 Dynamic Bayesian Networks

Given a set of time-dependent state variables X1, . . . , Xn, and given a BN N defined on such
variables, a Dynamic Bayesian Network (DBN) [13, 19] is essentially a replication of N over
two time slices t − ∆ and t (∆ is the time discretization step), with the addition of a set of
arcs representing the transition model. Let Xt

i denote the copy of variable Xi at time slice t,
the transition model is defined through a distribution P [Xt

i |X
t−∆
i , Y t−∆, Y t] where Y t−∆ is any

set of variables at slice t −∆ different from Xi (possibly the empty set), and Y t is any set of
variables at slice t different from Xi (possibly the empty set).

An edge connecting a variableXt−∆
i in the slice t−∆ to the variableXt

j in the slice t, is called
temporal arc (if i = j the arc connects the two instances of the same variable). The dependency
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of a given node on its parent nodes (possibly including its historical copy) is quantified in its
CPT.

4.2.1 Inference tasks

DBNs feature several kinds of analyses [13], using different types of inference algorithms.
The inference is carried out by means of computation of posterior probabilities. Given a set

of time stamped observations (called the evidence), the task is to determine the probability, at
a given time point, of a set of variables of interest, given (i.e., conditioned on) the evidence.
The following inference tasks can be performed:

• Prediction can support the analyst/system in identifying, on the basis of evidences obtained
from the analytics, the subset of techniques that the attacker will more likely exploit in
the future, thus enabling the setup of defensive actions. It consists in computing the
probability of a future state, given past evidence. In other words, the prediction task
consists in computing the posterior probability at time t of a set of queried variables Q,
given a stream of observations et1 , . . . , etk from time t1 to time tk with t1 < . . . < tk ≤ t.
Every evidence etj consists of a (possibly different) set of instantiated variables.

• A special case of prediction called Filtering occurs when the last evidence time point and
the query time are the same (t = tk). Filtering can support the security analyst or system
in online diagnosis and early detection.

• Smoothing enables diagnosis, allowing determining the probable causes of security events.
The task estimates a past state, given all the evidence up to now. So, the smoothing task
consists in computing the probability at time t of a set of queried variables Q, given a
stream of observations et1 , . . . , etk from time t1 to time tk with t < t1 < . . . < tk.

4.3 A DBN for the MITM attack

As an example to make the presentation more concrete, we show in Figure 8 a DBN that models
(among others) the attack processes of Figure 5. This is only a portion of the full DBN that
includes also the previous parts of the attack process, that is the lateral movement and the
escape from the container, but the relevant concepts are clearly exemplified by this fragment.
The central branches in the figure, starting from the low central node labelled “UnsecureCred”,
up to the top node, model the attack from Figure 5. The top node, “UnstablePS (OR)”
represents the attack’s goal: making the power system unstable. The branches to the right
and to the left are different possible attack paths, that have not been implemented so far. We
included such attacks, even though they currently cannot take place in our testbed, since we
want to analyze how our model detects among others the attack process that is really taking
place.

Other than the top node, all nodes represent either attack steps, e.g. edges in the AGs,
or analytics, that in the AGs are denoted as yellow comments to edges (cf. Figure 5). The
power system is unstable (the attacker’s goal occurs), if any of the three last steps below it are
successful. Analytics are leaves in the DBN graph: when an attack step takes place, traces are
collected by sensors and alarms are raised by the analytic. Therefore in the DBN there is an
arrow from a technique to an analytic, if the occurrence of the technique potentially causes an
evidence from the analytic.

Nodes labelled “CorrReact” and “WrongLogicExec”, near the top, are different from the
rest. They represent actions that cause the attackers’ plan to evolve but are not properly attack
steps: “CorrReact” represents the reaction of the system automatic services to false measures
injected by the attacker, corresponding to the dotted arrow in Figure 5 (see the discussion in
Section 3.2). “WrongLogicExecution” is similar in concept: it is the final step of an attack
process in which the attackers have modified the controller’s logic, say with a malware, and
therefore the system will react according to the malicious logic. Also in this latter case, the
event is not properly an attack step but completes the process planned by the attackers. In
both cases, we consider that some protection measures have been taken, in the form of some
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Figure 8: A portion of our Dynamic Bayesian Network

automatic control, and therefore these final steps don’t take place necessarily but only with a
certain probability.

Each attack step can occur with a certain probability, conditioned on the occurrence of
its ancestors: so, for instance, the arrow from the node labelled “MITM” to the one labelled
“SpoofRepMsg” implies that a reporting message can be spoofed only after a MITM has been
successfully established. If a node has no ancestors, we are assuming that the prerequisites for
that attack step are verified. Arcs from one node to itself model the fact that if an attack step
has been carried out at time t, at time t+ 1 we acknowledge that it has already occurred. The
a priori probabilities of nodes with no ancestors and the conditional probabilities of all other
nodes are parameters that must be chosen with attention.

4.4 Representing attack paths timing

The DBNs are a discrete time model and as such it is capable to represent and evaluate proba-
bilities that a certain attack step is carried out by attackers provided its preconditions are true,
or compute the probabilities that a certain attack process takes place. But it cannot compute
probability distributions of completion times of the different techniques or attack paths.

This kind of information would be very useful for security analysts, supporting them in
decisions on how to react when under attack. For instance, assume that the analysts know
that with a very high probability, say 90%, the attackers will not gain their goal before two
days. This allows them to take advantage of this delay to carefully plan the defense, activating
effective protection mechanisms and further detection tools, and increasing monitoring for a
better post-mortem analysis. To the contrary, the information that the time left before the
attackers reach their goals is less than two hours, with a probability of, say, 80%, prompts the
analysts to rush to the protection of most important resources, even with drastic measures.

The above tasks require a continuous time model, which we approximated with our discrete
time models.

Consider the behavior of the node “MITM” in the DBN of Figure 8: if node “ModAuthProc”
has been activated, starting in state 0, at each time-step it has a constant probability p to jump
at the next step in state 1, and 1 − p to remain in state 0. In such a case the number of
steps needed to get the first state transition is a geometric random variable X with parameter
p. If we assume that each time-step has a constant duration ∆t, the time required to make
the transition can be computed as the sojourn time in state 0, which is equal to k∆t. When
∆t → 0 the time-step becomes an infinitesimal dt and the discrete geometric random variable
corresponds in continuous time to an exponential random variable Y with rate λ, where the
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probability to make the transition during an infinitesimal interval [t, t+ dt] is:

Pr(t ≤ Y ≤ t+ dt) = λdt. (2)

Moreover, we know that in a geometric distribution the expected number of steps E[X] of
sojourning in state 0 is equal to 1/p and, in the analogous continuous case of the exponential
distribution with rate λ, the expected sojourn time is:

E[Y ] =
1

λ
. (3)

Notice that according to Eq. 3, we can define an exponential random variable with a desired
expected sojourn time T by setting the rate λ of its distribution to the inverse of T .

Thus, to approximate the behavior of a single node with a continuous model such that its
expected sojourn time is equal to a given value T , we must build a discrete model with a proper
choice of ∆t and p. In particular, we must set:

∆t =
T

m
; p =

1

T
∆t =

1

T

T

m
=

1

m
; (4)

so ∆t satisfies Eq. 3, to obtain the given sojourn time, and it is further divided by m ∈ N+ to
achieve a desired approximation accuracy. The resulting probability p to make the jump during
∆t must satisfy the discrete version of Eq. 2. In Table 1, we show the mean times to completion
of each technique (and of all other event and status nodes), that is the desired sojourn time in
state 0 of each node. One unit in Table 1 corresponds to 10 minutes.

Techniques, events, states
Abbreviations Full names Average completion times
Masquerade Masquerade 2
MITM Man In The Middle 2
ModAuthProc Modify Authentication Process 1
ModCtrlLogic Modified Control Logic 50
ModifyProgram Modify Program 2
SpoofRepMsg Spoof Reporting Message 15
UnauthCommand Unauthorized Command 40
UnsecCred Unsecured Credentials 1
CorrReact Correct Reaction 0
WrongLogicExec Wrong Logic Execution 0
UnstablePS Unstable Power System 0

Table 1: Estimated completion times of each technique in Figure 8

The same approach can be applied to all technique-nodes in the DBN, however care is needed
to cope with concurrent activities. For instance accordingly to their CPTs, when “MITM”
becomes active (state 1), the nodes “SpoofRepMsg” and “UnauthCommand” represent two
concurrent activities all enabled at the same moment and racing against each other to jump
in state 1; the first winning the race will make the jump. The time at which such jump will
occur still follows an exponential distribution with a rate equal to the sum of the rates of each
concurrent activities. For such reasons, to apply the approximation to the whole network, Eq. 4
must be extended to:

∆t =
1

m
∑

i(1/Ti)
; pi =

∆t

Ti

, (5)

where Ti and pi are the desired sojourn times and resulting jump probabilities of each technique,
respectively. The introduction of the sum of the inverse of the sojourn times is required to model
concurrency. More details can be found in the explanation of the uniformization method [14].

In this way we obtain a discrete-time DBN in which all conditional probabilities are re-
scaled with respect to the computed ∆T . The approximation of the continuous-time model
is obtained assuming that a time sufficiently small with respect to the specific parameters in
input passes between two steps of the DBN with re-scaled parameters. This approximation
allows to recompute distribution probabilities of the time to compromise (TTC) of the different
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Table 2: Conditional Probability Table of the variable ModAuthProc
entry UnsecCred ModAuthProc (t-1) ModAuthProc (t) probability

1 0 0 0 1
2 0 0 1 0
3 0 1 0 1
4 0 1 1 0
5 1 0 0 0.931
6 1 0 1 0.069
7 1 1 0 0
8 1 1 1 1

techniques and attack paths, and by construction ensures that the mean times of the single
techniques are the same as those given as input parameters. Moreover also the mean time of
the TTC of an attack sequence is equal to the sum of the mean values of all the attack steps of
the sequence.

In the the DBN (Figure 8) “UnsecCred” is the parent node of “ModAuthProc”; in other
words, “UnsecCred” influences “ModAuthProc” because the activation of the first technique
allows the second one to be attempted. Besides depending on “UnsecCred”, in the Conditional
Probability Table (CPT) (Table 2) “ModAuthProc” at time t depends on its copy at time t−1,
in order to represent its discrete temporal evolution. In the CPT the activation of a technique
is represented by the value 1 (0 otherwise). Each entry of the CPT represents a specific state
configuration of “UnsecCred” and “ModAuthProc” (at time t−1), and provides the probability
that “ModAuthProc” (at time t) evolves towards the state 0 or 1. In particular, in the entries
1-4 we have the situation where “UnsecCred” has not happened yet, so the probability that
“ModAuthProc” occurs (state 1) is null. In the entries 5-6 “UnsecCred” has occurred and
“ModAuthProc” is not active yet at time t−1; therefore “ModAuthProc” may occur (1) or not
(0) at time t with a probability established according to equation 4 and the completion time
defined in Table 1. Finally, in the entries 7-8, “ModAuthProc” is already active (1) at time
t− 1, and due to the absence of countermeasures in the model, “ModAuthProc” will maintain
its state at time t.

5 Experiments

The experiments carried out involve several aspects. We have started with functional exper-
iments showing that the integration of all components works as expected. The attacker car-
ries out the prescribed attack processes, sensors collect data and send it to the database, the
Opensearch pipeline forwards the data to the model managers through Kafka and the models
are activated. In the following we report how variations in the behaviour of the attacker has
led to different inferences of the model.

Recall that the attacker can carry out the attack processes in the center of Figure 8. The
“File access” analytic monitors that there are no suspicious accesses to the private key file;
it is implemented using the Linux Audit Framework [2] together with the auditd module of
Auditbeat [4]. “Integrity check” raises an alert if the CA bundle has been altered; this is
implemented using the file_integritymodule of Auditbeat. The two coherence analytics were
implemented collecting syslog data and analyzing it in Opensearch. We also implemented the
“ServLaunchCmd” analytic, even if it is related to an attack process that we don’t support yet,
to monitor additional activity: recall that our synthetic attacker embeds the attack processes
in additional, randomly selected attack attempts that are generally bound not to succeed. This
analytic is implemented again using Auditbeat, and it looks for occurrences of the Systemctl

command.
In our experiments, all the analytics that we haven’t implemented yet will give no evidences.

We stress that “no evidence” from an analytic is different from negative evidence. In the
former case, we have not implemented the analytics and therefore the detection system has no
information about possible adversarial activity in that domain. In the latter, the sensors are
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deployed but detect nothing suspicious. In the model we assume that the analytics are imperfect
but still very trustworthy: a technique may go undetected (false negative), or an alarm may be
raised even without the attempt to use the technique (false positive). In both cases we assume
a high confidence in the monitoring system and set the error probability to 10−4.

In this paper, to design and evaluate the DBN, we use the Bayes Net Toolbox for Matlab
(BNT) [1], and in particular, we resort to the Boyen-Koller (BK) inference algorithm [3]. BK is
a general inference algorithm for DBNs that can perform both exact and approximate inference
by trading-off precision (accuracy) of the posterior probability estimation and computational
(time and space) resources. In the present work we experimented with the version of BK able
to perform exact inference on the DBN model.

Figure 9: Probabilities of successful technique exploitation with no evidences.

5.1 No monitoring

In the first experiment we compute the likelihood that the techniques are successfully exploited
by the attacker, in the setting in which an attack is carried out, but the monitoring system
is not deployed into the architecture, thus no evidences are collected. For this experiment, we
turned off the implemented monitoring system. Notice that in this case, since no monitoring has
been deployed, it is irrelevant whether the synthetic attacker is at work or not, since there’s no
monitoring system to record its activity anyway. Results in this setting provide useful insights
about the structural characteristics of the attack process according to the apriori probabilities
derived from the estimated completion times. Fig. 9 shows the cumulative probabilities of
success of the different techniques. According to the attack process modeled in the DBN in
Fig. 8, after compromising a machine in the OT network, the attacker can modify the DER
control logic (labeled “ModCtrlLogic”), obtain insecurely stored credentials (“UnsecCred”) or
modify a program of the plant controller (“ModifyProgram”). The difference between the
success probabilities of such techniques depends on their average completion times, thus as
expected it is more likely that the attacker completes “UnsecCred” attack since it has the
shortest average completion time, then it can be followed by “ModifyProgram’ or the sequence of
“ModAuthProc” and “MITM” techniques. The “ModifyProgram” attack is less likely because it
takes a significant higher time to be completed. Generally, we can observe an inverse correlation
between the success probability of a technique at a given time and its distance from the final goal
since the chance of success of a high-level attack step depends on the success of lower steps in
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the attack path and it is further modulated according to its average completion time. Moreover,
we can notice that in the long run all considered techniques will eventually succeed, except for
the final step “CorrReact”. As explained in Sec. 4.3 such step depends on the activation of a
protection measure and thus it can be successful only with a given probability, fixed to 0.7 in
all the experiments.

Figure 10: Probabilities of successful technique exploitation when the attacker performs attack steps
“UnsecCred” and “ModAuthProc” just before t = 40 (analytics “FileAccess” and “IntCheck” up
from t = 40, all other implemented analytics down, the remaining undefined (no evidence).)

5.2 Two attack steps

Next, we turned on the monitoring system and observed how the collected evidences affected
the results. We started the adversary with a delay and had it carry out the first two attack
steps in rapid sequence; evidences of its activity reached the DBN at time t = 40. The model
assumes that an attack is underway starting from t = 0, which models a typical safe posture
of the security analyst: the attacker is never inactive, as far as we know. But, until t =
40, all the implemented analytics certify there is no adversarial activity; at that point both
“FileAccess” and “IntegrityCheck“ raise an alert. The alerts, once raised, are never cleared in
the DBN, and so the evidences are considered positive until the end of the analysis at t = 80 (see
Section 6). All other implemented analytics are still giving no alarm. We can observe in Fig. 10
that initially, without any positive or negative evidences from the “UpdateMonitor” analytic,
and negative evidence from all the others, the DBN model infers that the attacker can only
attempt a “ModCtrlLogic” attack; then “WrongLogicExecution” might occur and thus there
is a probability, increasing over time, that the system be compromised through attacks that
cannot be detected. When both “FileAccess” and “IntegrityCheck“ start to raise alerts, the
model correctly infers that the attacker is taking the central right attack path that goes from
“UnsecCred” to “ModAutProc” and that the following more likely step will be the exploitation
of a Man-In-The-Middle attack splitting MMS over the TLS connection. Note that, even if
such step is successful, the model derives that the attacker is not able to go further along this
path, since both analytics “MeasureCoherence” and “UnauthCommand” are not raising alerts.
Therefore the evidences triggered by the first attack steps carried out by our synthetic attacker
have no impact on the forecasts of system instability.
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Figure 11: Probabilities of successful technique exploitation of the techniques in the attack path
starting with “ModifyProgram”. At left: in the same setting of Figure 10; at right: when the
attacker also tries to stop a service triggering analytic “ServLaunchCmd”.

5.3 Disturbances

Recall that our attacker can add randomly selected attacks to the attack paths, to mimic a
real attacker trying different possibilities, and create disturbances in the detection system. In
the following experiment we replicated the activity of Section 5.2, but the attacker also tried to
stop a Tomcat server (not running) in the machine running the SCADA system. This attempt
triggered an alert of the “ServLaunchCmd”analytic. To highlight the differences, we plot in
Figure 11 only the probabilities of the techniques in the rightmost attack path of Figure 8. On
the left side, we show the probabilities in the setting of the experiment of Section 5.2. Here
we see that all techniques are considered not to occur because the only analytic deployed for
the first step (“ModifyProgram”) is raising no alarm: all other attack steps can take place only
after this one. The growing probability of an unstable system is due to the reasons discussed in
Section 5.2.

On the right side, we show what the DBN model infers when our attacker is also trying to
stop the service. This time, adversarial activity related with the “ModifyProgram” technique is
detected. Thus, the detection system expects with high probability that “ModifyProgram” has
been carried out. Since no monitoring for a “Masquerade” technique is deployed, the DBN can
only warn that with high probability also that attack step will be soon carried out. But, we
have an analytic in place to detect occurrence of an unauthorized command, and this is raising
no alarm. Then even though there is suspicion that the attacker has started along this attack
path, the analyst can be sure that no further steps have been taken so far and therefore no
impact on the instability of the system is expected (UnauthCommand has zero probability to
occur and the curve for UnstablePS is exactly as on the lefthand side).

5.4 One whole attack process

Here we had our attacker carry out one complete attack process: from “UnsecCred” all the
way through “SpoofRepMsg”. The monitoring system detects that the measures sent to the
server all of a sudden are not coherent, and thus also “MeasureCoherence” signals a suspicious
activity at t = 40. The conclusions of the model are shown in Fig. 12. In this case we can
derive that the attacker is also able to modify reporting messages. We assumed that in this
case with probability 0.7 the automatic protections of the control system are not able to detect
that something is wrong with the reported measures and to disable a reaction, thus causing
the power system instability. Notice in Figure 12 how the probability of an unstable system
increases when “MeasureCoherence” raises an alert.

This experiment highlighted one interesting aspect that requires further discussion: we had
estimated (Table 1) a rather long execution time for the attack steps that injects false measures
(“SpoofRepMsg”). Our attacker has altered dramatically the measures and thus the attack step
was detected right away. On the one hand, this is unrealistic and says that we should parametrize
the attacker more carefully. On the other hand this shows how in our model evidences take
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Figure 12: Probabilities of successful technique exploitation in case of a full attack process (analytics
“FileAccess”, “IntCheck”, “MeasureCoherence” up from t = 40, other implemented analytics down,
the remaining analytics undefined (no evidence).)

priority over any other consideration. We discuss evidences further in Section 6.

5.5 A slower attack

The model can also cope with a sequence of observations spread over time. In the experiment
shown in Fig. 13 we had the attacker wait some random time between attack steps. So the alert
from analytic “FileAccess” has been raised at t = 6, then at t = 9 “IntCheck” raised an alert, and
finally “MeasureCoherence” at t = 35. Again all other implemented analytics remained inactive
for all the time. The DBN infers the same probabilities for the techniques we are interested in,
as in Figure 12. In Figure 13, though, since alerts are raised at different time-instants, it can be
seen more clearly what the DBN infers from each alert. In particular notice that the occurrence
of a MITM starts to be expected only after it is reported that the authentication process has
been modified (“ModAuthProc”). Also notice that only when the analytic for “SpoofRepMsg”
becomes active, then the model infers a higher probability of reaction to the injected measures,
and as a consequence also the probability of an unstable system increases abruptly.

5.6 Slow and complete attack

This time, we had the attacker carry out both the attack processes that have been implemented.
Again we timed its activity randomly. We report the probabilities inferred by the DBN in
Figure 14. The times at which alerts were reported have changed with respect to Figure 13
since the adversarial timings are randomized in the current experiment and the previous. It is
interesting to notice here, is that after the attacker injects a command (“UnauthCommand”,
detected at t = 52), the probability that the system will be unstable jumps to 1.
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Figure 13: Probabilities of successful technique exploitation with a slower attack (analytics “FileAc-
cess”, “IntCheck”, “MeasureCoherence” activated at t = 6, t = 9 and t = 35, respectively; other
implemented analytics down, the remaining analytics undefined (no evidence).)

Figure 14: Probabilities of successful technique exploitation when the attacker carries out both
attack processes with randomized timing (analytics “FileAccess”, “IntCheck”, “MeasureCoherence”
and “CommandCoherence” activated at t = 8, t = 9, t = 31, t = 52 respectively; other implemented
analytics down, the remaining analytics undefined (no evidence).)
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6 Conclusions and future directions

We have implemented a test-bed for the evaluation of detection models in which we emulate an
attacker and deploy a monitoring system. The framework is modular in that it allows testing
different detection mechanisms, possibly in parallel, but also enables defining a specific profile
for the attacker, and adding or removing attack steps.

In the first testing phases we have verified the interoperability of the various components and
that the data flow is as expected. We have seen the models mirror the activity of the attacker.
On the other hand, the experiments have exposed some shortcomings of the models: our current
models don’t capture the different attacker profiles, the analytics remain valid indefinitely. See
below for the discussion of these issues, but bear in mind that the goal of the framework is
precisely exposing possible inadequacies of the models we test.

Our DBNs are so far parametrized only based on estimated completion times of the attacks.
This means that there is no attempt, as yet, at modelling the attacker’s profile. The profile is
important when the detection model must integrate incomplete information from the monitoring
system. We plan to introduce features to model different attacker profiles in the DBN, matching
the various behaviours that can be configured for the synthetic attacker. In order to parametrize
correctly the attacker’s behaviour and the DBN that models it, it is necessary to have access to
extensive data on real world attacks. The MITRE ATT&CK project is a step in that direction,
but unfortunately the knowledge of the real scenario is currently limited, partly because not
all attacks are detected, partly because not all of those detected are reported. These limits
are even more evident in the ICS ATT&CK project. Moreover, that project considers all
industrial and critical infrastructures, whereas we would like to have data specific for the power
infrastructure. Therefore, currently, we cannot count on using realistic data, as a consequence
in the test process we also intend to determine the robustness of the models, analyzing how
much the results are affected by a discrepancy between the actual adversarial behaviour and
the assumptions expressed by BNs’ parameters.

On the other hand, a more realistic emulation of the attacker would allow us to create
realistic traffic in the network and gather traces that could in turn be used to train machine
learning models, to increase our detection modules.

After these preliminary tests, our aim is to use the framework to understand the potentialities
of the models we integrate in it, in particular of the DBNs. In the experiments we presented
here we only used filtering for the analyses, that is we concentrated on online diagnosis and
early detection. Through our framework’s dashboard the analysts will see graphs like those in
Figures 10 through Figures 14 limited to the time instant of the observation; for instance all of
our figures assume that the analyst is watching the dashboard at t = 80. With DBNs we can
carry out also predictive analyses for times beyond the current instant t; or diagnosis that tries
to determine (past) causes of events detected by the monitoring system. Within our framework,
besides testing the validity of the model results, we also intend to study an effective way to
present all of this information in a way that supports the evaluation of the security posture.

Currently, when an alert is raised from an analytic in our DBN model, it remains active for
the rest of the analysis. We plan on introducing an ageing mechanism for analytics, in the spirit
of [16]. This would enable to discard an alert as a false alarm if it is not followed by additional
indications of suspicious activity in due time. The ageing parameter is again a delicate issue,
since often the attacker chooses to act slowly precisely to avoid detection.

Detection models offers added value with respect to the raw observation of the alerts from
the monitoring system, allowing to derive more articulate information than just the occurrence
of observable events. It is key understanding how to exploit this possibility in the most effective
way. Our framework is a valuable tool to help analyze and unleash these potentialities.
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