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Reasoning in a Rational Extension of SROEL(u,×)
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Abstract. In this work we define a rational extension SROEL(u,×)R T of
the low complexity description logic SROEL(u,×), which underlies the OWL
EL ontology language. The logic is extended with a typicality operator T, whose
semantics is based on Lehmann and Magidor’s ranked models and allows for the
definition of defeasible inclusions. We develop a Datalog materialization calcu-
lus for rational entailment in SROEL(u,×)RT, showing that instance checking
can be computed in polynomial time. Also, we show that deciding instance check-
ing under minimal entailment is a CONP-hard problem. An extended abstract of
this paper appears in [22].

1 Introduction

The need for extending Description Logics (DLs) with nonmonotonic features has led,
in the last decade, to the development of several extensions of DLs, obtained by combin-
ing them with the most well-known formalisms for nonmonotonic reasoning [31, 2, 11,
13, 16, 21, 20, 24, 8, 6, 10, 30, 25, 9, 3] to deal with defeasible reasoning and inheritance,
to allow for prototypical properties of concepts and to combine DLs with nonmonotonic
rule-based languages under the answer set semantics [13], the well-founded semantics
[12], the MKNF semantics [25], as well as in Datalog +/- [23]. Systems integrating
Answer Set Programming (ASP) [14] and DLs have been developed, e.g., the DReW
System for Nonmonotonic DL-Programs [32].

In this paper we study a preferential extension of the logic SROEL(u,×), intro-
duced by Krötzsch [27], which is a low-complexity description logic of the EL family
[1] that includes local reflexivity, conjunction of roles and concept products and is at the
basis of OWL 2 EL. Our extension is based on Kraus, Lehmann and Magidor (KLM)
preferential semantics [26], and, specifically, on ranked models [29]. We call the logic
SROEL(u,×)RT and define notions of rational and minimal entailment for it.

The semantics of ranked interpretations for DLs was first studied in [8], where a ra-
tional extension of ALC is developed allowing for defeasible concept inclusions of the
formC@˜D. In this work, following [17, 21], we extend the language of SROEL(u,×)
with typicality concepts of the form T(C), whose instances are intended to be the typ-
ical C elements. Typicality concepts can be used to express defeasible inclusions of
the form T(C) v D (“the typical C elements are D”). Here, however, as in [7, 15],
we allow for typicality concepts to freely occur in concept inclusions. In this respect,
the language with typicality that we consider is more general than the language with
typicality in [21], where minimal ranked models have been shown to provide a seman-
tic characterization to rational closure for the description logic ALC, generalizing to
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DLs the rational closure by Lehmann and Magidor [29]. Alternative constructions of
rational closure for ALC have been proposed in [10, 9]. All such constructions regard
languages only containing strict or defeasible inclusions. In particular, in the language
with typicality, T(C ) may occur in inclusions T(C ) v D (but also in assertions).

In this work, we define a Datalog translation for SROEL(u,×)RT which builds on
the materialization calculus in [27], and, for typicality reasoning, is based on properties
of ranked models, showing that instance checking for SROEL(u,×)RT can be com-
puted in polynomial time under the rational entailment. While this result has the con-
sequence that the Rational Closure for SROEL(u,×)RT (based on definition in [21])
can be computed in polynomial time, we show that, for general SROEL(u,×)RT
KBs, deciding instance checking under minimal entailment is a CONP-hard problem.

2 A rational extension of SROEL(u,×)

In this section we extend the notion of concept in SROEL(u,×) adding typicality
concepts (we refer to [27] for a detailed description of the syntax and semantics of
SROEL(u,×)). We let NC be a set of concept names, NR a set of role names and NI
a set of individual names. A concept in SROEL(u,×) is defined as follows:

C := A | > | ⊥ | C u C | ∃r.C | ∃S.Self | {a}

where A ∈ NC and r ∈ NR. We introduce a notion of extended concept CE as follows:

CE := C | T(C) | CE u CE | ∃S.CE

where C is a SROEL(u,×) concept. Hence, any concept of SROEL(u,×) is also an
extended concept; a typicality concept T(C) is an extended concept and can occur in
conjunctions and existential restrictions, but it cannot be nested.

A KB is a triple (TBox ,RBox ,ABox ). TBox contains a finite set of general con-
cept inclusions (GCI)C v D, whereC andD are extended concepts; RBox (as in [27])
contains a finite set of role inclusions of the form S v T , R ◦ S v T , S1 u S2 v T ,
R v C × D, where C and D are concepts, R,S, T ∈ NR. ABox contains individ-
ual assertions of the form C(a) and R(a, b), where a, b ∈ NI , R ∈ NR and C is an
extended concept. Restrictions are imposed on the use of roles as in [27].

Following [8, 21], a semantics for the extended language is defined, adding to in-
terpretations in SROEL(u,×) [27] a preference relation < on the domain, which is
intended to compare the “typicality” of domain elements. The typical instances of a
concept C, i.e., the instances of T(C), are the instances x of C that are minimal with
respect to <.

Definition 1. A SROEL(u,×)RT interpretationM is any structure 〈∆,<, ·I〉where:

– ∆ is a domain; ·I is an interpretation function that maps each concept name A to
set AI ⊆ ∆I , each role name r to a binary relation rI ⊆ ∆I × ∆I , and each
individual name a to an element aI ∈ ∆I . ·I is extended to complex concepts as
usual:
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>I = ∆; ⊥I = ∅; {a}I = {aI};
(C uD)I= CI ∩DI ;
(∃r.C)I= {x ∈ ∆ | ∃y ∈ CI : (x, y) ∈ rI};
(∃R.Self)I= {x ∈ ∆ | (x, x) ∈ RI}.

– < is an irreflexive, transitive, well-founded and modular relation over ∆;
– the interpretation of concept T(C) is defined as follows:

(T(C))I =Min<(C
I)

where Min<(S) = {u : u ∈ S and @z ∈ S s.t. z < u}.

Furthermore, an irreflexive and transitive relation < is well-founded if, for all S ⊆ ∆,
for all x ∈ S, either x ∈ Min<(S) or ∃y ∈ Min<(S) such that y < x. It is modular
if, for all x, y, z ∈ ∆, x < y implies x < z or z < y.

As in [29], modularity in preferential models can be equivalently defined by postulating
the existence of a rank function kM : ∆ 7−→ Ω, whereΩ is a totally ordered set. Hence,
modular preferential models are called ranked models . The preference relation < can
be defined from kM as follows: x < y if and only if kM(x) < kM(y).

Given an interpretationM the notions of satisfiability and entailment are defined as
usual.

Definition 2 (Satisfiability and rational entailment). An interpretationM = 〈∆,<
, ·I〉 satisfies:
• a concept inclusion C v D if CI ⊆ DI ;
• a role inclusion S v T if SI ⊆ T I ;
• a generalized role inclusion R ◦ S v T if RI ◦ SI ⊆ T I
(where RI ◦ SI = {(x, z) | (x, y) ∈ RI and (y, z) ∈ SI , for some y ∈ ∆});
• a role conjunction S1 u S2 v T if SI1 ∩ SI2 ⊆ T I ;
• a concept product axiom C ×D v T if CI ×DI ⊆ T I ;
• a concept product axiom R v C ×D if RI ⊆ CI ×DI ;
• an assertion C(a) if aI ∈ CI ;
• an assertion R(a, b) if (aI , bI) ∈ RI .

Given a KB K = (TBox ,RBox ,ABox ), an interpretationM =〈∆,<, ·I〉 satisfies
TBox (resp., RBox , ABox ) ifM satisfies all axioms in TBox (resp., RBox , ABox ),
and we writeM |= TBox (resp., RBox , ABox ). An interpretationM = 〈∆,<, ·I〉 is
a model of K (and we writeM |= K) ifM satisfies all the axioms in TBox , RBox
and ABox .

Let a query F be either a concept inclusion C v D, where C and D are extended
concepts, or an individual assertion. F is rationally entailed by K, written K |=sroelrt
F , if for all modelsM =〈∆,<, ·I〉 of K,M satisfies F .

Consider the following example of knowledge base, stating that: typical Italians
have black hair; typical students are young; they hate math, unless they are nerd (in
which case they love math); all Mary’s friends are typical students. We also have the
assertions stating that Mary is a student, that Mario is an Italian student, and is a friend
of Mary, Luigi is a typical Italian student, and Paul is a typical young student.
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Example 1. TBox :
(a) T(Italian) v ∃hasHair .{Black}
(b) T(Student) v Young

(c) T(Student) v MathHater

(d) ∃hasHair .{Black} u ∃hasHair .{Blond} v ⊥
(e) MathLover uMathHater v ⊥
(f) ∃friendOf .{mary} v T(Student)

ABox : Student(mary), friendOf (mario,mary), (Student u Italian)(mario),
T(Student u Italian)(luigi), T(Student uYoung)(paul)

The fact that concepts T(C) can occur anywhere (apart from being nested in a
T operator) can be used, e.g., to state that typical working students inherit proper-
ties of typical students (T(Student u Worker) v T(Student)), in a situation in
which typical students and typical workers have conflicting properties (e.g., as re-
gards paying taxes). Also, we could state that there are typical students who are Italian:
> v ∃U.T(Student u Italian), where U is the universal role (>×> v U ).

Standard DL inferences hold for T(C) concepts and T(C) v D inclusions. For
instance, we can conclude that Mario is a a typical student (by (f)) and young (by
(b)). However, by the properties of defeasible inclusions, Luigi, who is a typical Italian
student, and Paul, who is a typical young student, both inherit the property of typical
students of being math haters (respectively, by rational monotonicity and by cautious
monotonicity).

A normal form for SROEL(u,×)RT knowledge bases can be defined. A KB in
SROEL(u,×)RT is in normal form if it admits all the axioms of a SROEL(u,×)
KB in normal form:

C(a) R(a, b) A v ⊥ > v C A v {c}
A v C A uB v C ∃R.A v C A v ∃R.B
{a} v C ∃R.Self v C A v ∃R.Self

R v T R ◦ S v T R u S v T A×B v R R v C ×D

(where A,B,C,D ∈ NC , R,S, T ∈ NR and a, b, c ∈ NI ) and, in addition, it admits
axioms of the form: A v T (B) and T (B) v C with A,B,C ∈ NC . Extending the
results in [1] and in [27], it is easy to see that, given a SROEL(u,×)RT KB, a seman-
tically equivalent KB in normal form (over an extended signature) can be computed in
linear time. In essence, for each concept T(C) occurring in the KB, we introduce two
new concept names, XC and YC . A new KB is obtained by replacing all the occur-
rences of T(C) with XC in all the inclusions and assertions, and adding the following
additional inclusion axioms:

XC v T(YC), T(YC) v XC , YC v C, C v YC

Then the new KB undergoes the normal form transformation for SROEL(u,×) [27].
The resulting KB is linear in the size of the original one.
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3 Minimal entailment

In Example 1, we cannot conclude that all typical young Italians have black hair (and
that Luigi has black hair) using rational monotonicity, as we do not know whether there
is some typical Italian who is young. To supports such a stronger nonmonotonic infer-
ence, a minimal model semantics is needed to select those interpretation where individ-
uals are as typical as possible.

We consider the notion of minimal canonical model in [21]. Given a KB K and a
query F , let S be the set of all the concepts (and subconcepts) occurring in K or F
together with their complements (S is finite).

Definition 3 (Canonical models). A model M = 〈∆,<, I〉 of K is canonical if, for
each set of SROEL(u,×)RT concepts {C1, C2, . . . , Cn} ⊆ S consistent withK (i.e.,
s.t.K 6|=sroelrt C1uC2u. . .uCn v ⊥), there exists (at least) a domain element x ∈ ∆
such that x ∈ (C1 u C2 u . . . u Cn)I .

Among canonical models, we select the minimal ones according to the following prefer-
ence relation≺ over the set of ranked interpretations. An interpretationM =〈∆,<, I〉
is preferred toM′ = 〈∆′, <′, I ′〉 (M≺M′) if:∆ = ∆′;CI = CI

′
for all conceptsC;

for all x ∈ ∆, kM(x) ≤ kM′(x), and there exists y ∈ ∆ such that kM(y) < kM′(y).

Definition 4. M is a minimal canonical model of K if it is a canonical model of K
and it is minimal among all the canonical models of K wrt. the preference relation ≺.

Definition 5 (Minimal entailment). Given a query F , F is minimally entailed by K,
written K |=min F if, for all minimal canonical modelsM of K,M satisfies F .

We can see that, under minimal entailment, from the KB in Example 1 we can conclude
∃hasHair .{Black}(luigi) and T(Young u Italian) v ∃hasHair .{Black}, as nothing
prevents a Young u Italian individual from having rank 0.

We can show that the problem of instance checking in SROEL(u,×)RT under
minimal entailment is CONP-hard. The proof is based on a reduction from tautology
checking of propositional 3DNF formulae to instance checking in SROEL(u,×)RT.

Theorem 1. Instance checking in SROEL(u,×)RT under minimal entailment is CONP-
hard.

Proof. (sketch) Given an alphabet of propositional variables L = {p1, . . . , pk}, let
γ = G1 ∨ . . . ∨Gn be a propositional formula in 3DNF, where, for each i = 1, . . . , n,
Gi = l1i ∧ l2i ∧ l3i and each lji (j = 1, . . . , 3) is a literal (a variable p ∈ L or its negation
¬p).

We define a KB K = (TBox ,RBox ,ABox ) in SROEL(u,×)RT as follows. We
introduce two concept names Ph, Ph ∈ NC for each variable ph ∈ L. Also, we intro-
duce inNC a concept nameDγ associated with the formula γ, a concept nameDi asso-
ciated with disjunct Gi, for each i = 1, . . . , n, and a role name R. We let a ∈ NI be an
individual name, and we define K as follows: RBox = {Ph × Ph v R, h = 1 , ..., k},
ABox = {T(Ph uPh)(a), h = 1, ..., k}, and TBox contains the following inclusions:

(1) T(Ph) uT(Ph) v ⊥,
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(2) T(>) v A A uB v ⊥ ∃R.A v B
(3) Di v Dγ

(4) C1
i u C2

i u C3
i v Di

(5) Di v C1
i u C2

i u C3
i

for each h = 1, . . . , k and for each i = 1, . . . , n, where U is the universal role and (for
j ∈ {1, 2, 3}) Cji is

Cji =

{
T(Ph) if lji = ph
∃U.(T(>) uT(Ph)) if lji = ¬ph

Let us consider any modelM= 〈∆,<, ·I〉 of K. Observe that, as aI ∈ Ph u Ph, aI

cannot have rank 0, otherwise it would be both a typical Ph and a typical Ph, falsifying
(1). By the role inclusions each Ph element is in relation R with a Ph element. Also,
by (2), there cannot be both a Ph element and a Ph element with rank 0, otherwise they
would be both A elements related by R (which is excluded by axioms on line (2)). It is
possible that neither Ph elements nor Ph elements have rank 0. In minimal canonical
models of K, however, there must be either a Ph element or a Ph element with rank 0.

Let kM(C) = min{kM(x) | x ∈ CI} be the rank of a conceptC in a ranked model
M. It can be seen that, in all the minimal canonical models of K, for all h = 1, . . . , k:

- either kM(Ph) = 0 or kM(Ph) = 0;
- kM(Ph u Ph) = 1 and kM(aI) = 1.

As a consequence, aI is either a typical Ph element (when the rank of Ph is 0) or a typ-
ical Ph (when the rank of Ph is 0). So there are alternative minimal canonical models
in which, for each h, aI is either a T(Ph), and in this case there exists a typical Ph ele-
ment with rank 0; or a is a T(Ph), and in this case there exists a typical Ph element with
rank 0. Therefore, in any minimal canonical models M of K: either aI ∈ (T(Ph))

I

or aI ∈ (∃U .(T(>) uT(Ph)))
I (but not both). Hence, for aI the two concepts in the

definition of Cji are disjoint and complementary. Then the following holds:
K |=min Dγ(a) if and only if γ is a tautology ut

Observe that, for KBs which only allow typicality concepts to occur on the left hand
side of typicality inclusions (call them simple KBs), Theorem 1 does not provide a lower
bound for minimal entailment. In fact, inclusion (5) may contain the typicality operator
on the right hand side. It is open whether a similar proof can be done also for simple
knowledge bases in SROEL(u,×)RT. For simple KBs in the rational extension of
ALC, it was proved in [21] that all minimal canonical models of the KB assign the
same ranks to concepts, namely, the ranks determined by the rational closure construc-
tion. Clearly, this must be also true for the fragment of SROEL(u,×)RT included in
the language of ALC. Note that K, in the proof above, has alternative minimal canon-
ical models with incomparable rank assignments. The existence of alternative minimal
models for a KB with free occurrences of typicality in the propositional case was ob-
served in [7] for Propositional Typicality logic (PTL) (see Example 3 therein, which,
however, exploits negation and hence it is not in the language of SROEL(u,×)RT.
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4 Deciding rational entailment in polynomial time

While instance checking in SROEL(u,×)RT under minimal entailment is CONP-
hard, in this section we prove that instance checking under rational entailment can be
decided in polynomial time for normalized KBs, by defining a translation of a normal-
ized KB into a set Datalog rules, whose grounding is polynomial in the size of the KB.
In particular, we extend the Datalog materialization calculus for SROEL(u,×), pro-
posed by Krötzsch [27], to deal with typicality concepts and with instance checking
under rational entailment in SROEL(u,×)RT.

The calculus in [27] uses predicates inst(a,C ) (whose meaning includes: the in-
dividual a is an instance of concept name C, see [28] for details), triple(a,R, b) (a
is in relation R with b), self (a,R) (a is in relation R with itself). In order to map a
SROEL(u,×)RT KB to a Datalog program, we add predicates to represent that: an
individual a is a typical instance of a concept name (typ(a,C )); the ranks of two indi-
viduals a and b are the same (sameRank(a, b)); the rank of a is less or equal than the
one of b (leqRank(a, b)).

Besides the constants for individuals inNI (which are assumed to be finitely many),
the calculus in [27] exploits auxiliary constants auxAv∃R.C (one for each inclusion of
the form A v ∃R.C ) to deal with existential restriction. We also need to introduce an
auxiliary constant auxC for any concept T(C) occurring in the KB or in the query,
used as a representative typical C, in case C is non-empty.

Given a normalized KB K = (TBox ,RBox ,ABox ) and queryQ of the form C(a)
or T(C)(a), where C is a concept in the normalized KB, the Datalog program for
instance checking in SROEL(u,×)RT, i.e. for querying whetherK |=sroelrt Q , is a
program Π(K), the union of:

1. ΠK , the representation ofK as a set of Datalog facts, based on the input translation
in [27];

2. ΠIR, the inference rules of the basic calculus in [27];
3. ΠRT , containing the rules for reasoning with typicality in SROEL(u,×)RT.

A query Q of the form T(C)(a), or C(a), is mapped to a goal GQ of the form
typ(a,C ), or inst(a,C ). We define Π(K) in such a way that GQ is derivable in Dat-
alog from Π(K) (written Π(K) ` GQ) if and only if K |=sroelrt Q .

ΠK includes the result of the input translation in section 3 in [27] where nom(a),
cls(A), rol(R) are used for a ∈ NI , A ∈ NC , R ∈ NR, and, for example:

– subClass(a,C ), subClass(A, c), subClass(A,C ) are used for C(a), A v {c},
A v C;

– subEx (R,A,C ) is used for ∃R.A v C ;

and similar statements represent other axioms in the normalized KB.
The following is the additional mapping for the extended syntax of the normal form

for SROEL(u,×)RT (note that no mapping is needed for assertions T(C)(a), as they
do not occur in a normalized KB):

A v T (B) 7→ supTyp(A,B)
T (B) v C 7→ subTyp(B ,C )
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Also, we need to add top(>) to the input specification.
ΠIR contains all the inference rules from [27]1:

(1) inst(x , x )← nom(x )
(2) self (x , v)← nom(x ), triple(x , v , x )
(3) inst(x , z )← top(z ), inst(x , z ′)
(4) inst(x , y)← bot(z ), inst(u, z ), inst(x , z ′), cls(y)
(5) inst(x , z )← subClass(y , z ), inst(x , y)
(6) inst(x , z )← subConj (y1 , y2 , z ), inst(x , y1 ), inst(x , y2 )
(7) inst(x , z )← subEx (v , y , z ), triple(x , v , x ′), inst(x ′, y)
(8) inst(x , z )← subEx (v , y , z ), self (x , v), inst(x , y)
(9) triple(x , v , x ′)← supEx (y , v , z , x ′), inst(x , y)
(10) inst(x ′, z )← supEx (y , v , z , x ′), inst(x , y)
(11) inst(x , z )← subSelf (v , z ), self (x , v)
(12) self (x , v)← supSelf (y , v), inst(x , y)
(13) triple(x ,w , x ′)← subRole(v ,w), triple(x , v , x ′)
(14) self (x ,w)← subRole(v ,w), self (x , v)
(15) triple(x ,w , x ′′)← subRChain(u, v ,w), triple(x , u, x ′), triple(x ′, v , x ′′)
(16) triple(x ,w , x ′)← subRChain(u, v ,w), self (x , u), triple(x , v , x ′)
(17) triple(x ,w , x ′)← subRChain(u, v ,w), triple(x , u, x ′), self (x ′, v)
(18) triple(x ,w , x )← subRChain(u, v ,w), self (x , u), self (x , v)
(19) triple(x ,w , x ′)← subRConj (v1 , v2 ,w), triple(x , v1 , x ′), triple(x , v2 , x ′)
(20) self (x ,w)← subRConj (v1 , v2 ,w), self (x , v1 ), self (x , v2 )
(21) triple(x ,w , x ′)← subProd(y1 , y2 ,w), inst(x , y1 ), inst(x ′, y2 )
(22) self (x ,w)← subProd(y1 , y2 ,w), inst(x , y1 ), inst(x , y2 )
(23) inst(x , z1 )← supProd(v , z1 , z2 ), triple(x , v , x ′)
(24) inst(x , z1 )← supProd(v , z1 , z2 ), self (x , v)
(25) inst(x ′, z2 )← supProd(v , z1 , z2 ), triple(x , v , x ′)
(26) inst(x , z2 )← supProd(v , z1 , z2 ), self (x , v)
(27) inst(y , z )← inst(x , y),nom(y), inst(x , z )
(28) inst(x , z )← inst(x , y),nom(y), inst(y , z )
(29) triple(z , u, y)← inst(x , y),nom(y), triple(z , u, x )

Note that inst(c, d) for c, d ∈ NI means [28] that {c} v {d}, i.e., c and d represent
the same domain element.

ΠRT , i.e. the set of rules to deal with typicality, is as follows; it contains rules for
supTyp and subTyp axioms, and rules that deal with the rank of domain elements. In
the rules, x, y, z, A,B,C are all Datalog variables.

(SupTyp) typ(x , z )← supTyp(y , z ), inst(x , y)
(SubTyp) inst(x , z )← subTyp(y , z ), typ(x , y)
(Refl) inst(x , y)← typ(x , y)
(A0 ) typ(auxC ,C )← inst(x ,C )
(A1 ) leqRank(x , y)← typ(x ,B), inst(y ,B)

1 Here, u, v, x, y, z, w, possibly with suffixes, are variables.
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(A2 ) sameRank(x , y)← typ(x ,A), typ(y ,A)
(A3 ) typ(x ,B)← sameRank(x , y), inst(x ,B), typ(y ,B)
(A4 ) typ(x ,B)← inst(x ,A), supTyp(A,B)
(B1 ) sameRank(x , z )← sameRank(x , y), sameRank(y , z )
(B2 ) sameRank(x , y)← sameRank(y , x )
(B3 ) sameRank(x , x )← >
(B4 ) leqRank(x , y)← sameRank(y , x )
(B5 ) leqRank(x , z )← leqRank(x , y), leqRank(y , z )
(B6 ) sameRank(x , y)← leqRank(x , y), leqRank(y , x )
(B7 ) sameRank(x , y)← nom(y), inst(x , y)

Rule (Refl) corresponds to the reflexivity postulate. Rules (A0 )−(A4 ) encode proper-
ties of ranked models: if there is a C element, there must be a typical C element (A0 );
a typical B element has a rank less or equal to the rank of any B element (A1 ); two el-
ements which are both typical A elements have the same rank (A2 ); if x is a B element
and has the same rank as a typical B element, x is also a typical B element (A3 ); if x
is an A element and all A’s are typical B’s, then x is a typical A (A4 ). (B1 ) − (B7 )
define properties of rank order. In particular, by (B7 ), two constants that correspond to
the same domain element have the same rank.

The postulates of rational consequence relation are enforced by the specification
above. Consider, for instance, (CM ). Suppose that subTyp(A,B) and subTyp(A,C )
are in ΠK (as T(A) v B , T(A) v C are in K) and that D is a concept name defined
to be equivalent to AuB in K. Suppose that typ(a,D) holds. One can infer typ(a,A)
and hence inst(a,C ), i.e., typicalAuB’s inherit from typicalA’s the property of being
C’s (the inference for Paul in Example 1). In fact, typ(a,A) is inferred showing that a
(who is a typicalD and anA, as it is aD) and auxA (who is a typicalA, by (A1 ), and a
D, since all the typical A’s are also B’s and hence AuB’s) have the same rank. In fact,
using(A1 ) twice, one can conclude both leqRank(a, auxA) and leqRank(auxA, a) so
that, by (B6 ), sameRank(a, auxA). Then, by (A3 ), we infer typ(a,A). With rule
(subTyp), from typ(a,A) and subTyp(A,C ), we conclude inst(a,C ). Reasoning in
a similar way, one can see that also (RM ) and (LLE ) are enforced by the rules above.
Inference in SROEL(u,×) already deals with conjunctive consequences (And) and
right weakening (RW ).

Theorem 2. For a SROEL(u,×)RT KB in normal form K, and a query Q of the
form T(C)(a) or C(a), K |=sroelrt Q if and only if Π(K) ` GQ.

Π(K) contains a polynomial number of rules and exploits a polynomial number of
concepts in the size of K, hence instance checking in SROEL(u,×)RT can be de-
cided in polynomial time using the calculus in Datalog. The encoding can be processed,
e.g., in an ASP solver such as Clingo or DLV (with the proper capitalization of vari-
ables); computation of the (unique, in this case) answer set takes a negligible time for
KBs with a hundred assertions (half of them with T).

Exploiting the approach presented in [27], a version of the Datalog specification
where predicates have an additional parameter (and is therefore less efficient than the
previous one) can be used to check subsumption for SROEL(u,×)RT. This also pro-
vides a polynomial upper bound for reasoning under rational closure in SROEL(u,×).



10 L. Giordano, D. Theseider Dupré

In fact, the rational closure of a simple KB can be defined based on the same construc-
tion given in [21] for ALC, by exploiting an iterative algorithm which verifies the ex-
ceptionality of concepts by subsumption checking in SROEL(u,×)RT. In particular,
one can define, for a simple KB K the notion of exceptionality as follows: C is excep-
tional wrtK iffK |=sroelrt T(>)uC v ⊥. This subsumption is not in the language of
normalized KBs, but it can be replaced by A v ⊥, adding T(>) v X and X uC v A
to K. The construction requires a quadratic number of subsumption checks.

5 Conclusions and Related Work

In this paper we defined a rational extension SROEL(u,×)R T of the low com-
plexity description logic SROEL(u,×), which underlies the OWL EL ontology lan-
guage, introducing a typicality operator. Building on the materialization calculus for
SROEL(u,×) in Datalog presented in [27], a calculus for instance checking and sub-
sumption under rational entailment is defined, showing that these problems can be de-
cided in polynomial time. This result also provides a polynomial upper bound for rea-
soning under rational closure in SROEL(u,×).

For general KBs, we have shown that minimal entailment in SROEL(u,×)RT
is CONP-hard. When free occurrences of typicality concepts in concept inclusions are
allowed, alternative minimal models may exist with different rank assignments to con-
cepts. In [7] this phenomenon has been analyzed in the context of PTL, considering
alternative preference relations over ranked interpretations which coincide over simple
KBs but, for general ones, define different notions of entailment satisfying alternative
and possibly incompatible postulates.

Among the recent nonmonotonic extensions of DLs are the formalisms for combin-
ing DLs with logic programming rules, such as for instance, [13], [30] and [25]. In [3]
a non monotonic extension of DLs is proposed based on a notion of overriding, sup-
porting normality concepts and enjoying nice computational properties. In particular, it
preserves the tractability of low complexity DLs, including EL++ and DL-lite.

Future work may include optimizations, based on modularity as in [5], of the cal-
culus for rational entailment, and the development of rule based inference methods for
SROEL(u,×)RT minimal entailment based on model checking in ASP. An upper
bound on the complexity of minimal entailment for general KBs is missing. A further
issue to understand is whether a materialization calculus can be defined for the pref-
erential extensions of DLs in the EL family in [18, 19], whose interpretations are not
required to be modular. In [19], for a preferential extension of EL⊥, with a notion on
minimal model different from the one in this paper, it is shown that minimal entailment
is EXPTIME-hard already for simple KBs, similarly to what happens for circumscriptive
KBs [4].

Apart from providing a complexity upper bound, the Datalog encoding presented
in this paper is intended to provide a way to integrate the use of SROEL(u,×) KBs
under rational entailment with other kinds of reasoning that can be performed in ASP,
and, by extending the encoding to deal with alternative models of the KB, also to allow
the experimentation of alternative notions of minimal entailment, as advocated in [7].
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Our approach can potentially be incorporated in systems like DReW [32], that already
exploits the mapping by Krötzsch for OWL 2 EL.
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