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Abstract

Most of our daily activities are carried out by means of mobile applications, that typically generate

and store on the device large sets of data. The forensic analysis of these data thus plays a crucial

role during an investigation, as it allows to reconstruct the above activities. Manually analyzing

these applications is a long, tedious, and error-prone task.

In this paper we present the design, implementation, and evaluation of AnForA, a software tool

that automates most of the activities that need to be carried out to forensically analyze Android

applications, and that has been designed in such a way to yield various important properties, namely

fidelity, completeness, soundness, effectiveness, repeatability, and generality.

AnForA is based on a dynamic “black box” approach, in which the application to be analyzed is

first installed on a virtualized Android device, and then a set of experiments are carried out, in

which actions of interest are automatically performed on the application by emulating a human

user that interacts with its interface. During the experiments, the filesystems of the device storage

are actively monitored, so that the data created or modified by each one of these actions can be

located and correlated with that action.

We have devised a proof-of-concept implementation of AnForA, that we use to assess its ability

in achieving its design goals, by analyzing through it several Android applications already studied

in the literature, so that we can compare AnForA’s results against those reported in these papers.

The results of our evaluation confirm that AnForA greatly simplifies the forensic analysis of Android

applications, and exhibits all the properties mentioned above.

Keywords: Digital forensics, mobile forensics, Android applications, digital evidence, automated

forensics analysis.
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1. Introduction

Mobile devices are an integral part of our everyday lives. More often than not, they play a

key role in all our activities, and not only in our interpersonal communications. Most of our daily

activities (e.g., eating, sleeping, doing sport, driving, interacting with other people, etc.) are indeed

carried out, at least in part, by using suitable apps installed on our mobile devices. These apps

generate and store on the device large sets of data, that may be later used to reconstruct the

activities carried out by the user on the device. Hence, the forensic analysis of these applications

may (and usually does) play a crucial role during an investigation.

To reconstruct user activities starting from the data generated by a given application, the

analyst needs to know (a) which data are generated by the application, (b) how these data are

encoded, (c) where these data are stored on the device, and (d) the data generated or modified

by each operation allowed by the application. In this way, it is indeed possible to establish the

causal correlation between the data generated by the application and the user action that led the

application generate it. Once these correlations have been established in the general case, it is

possible to infer, from the presence of certain data on a given device, whether a given action may

have been performed or not on that device.

Unfortunately, gaining the above knowledge is usually a rather complex affair. It indeed involves

to perform a set of controlled experiments, in which (a) the analyst carries out each action of

investigative interest (e.g., sending a text message), (b) the internal and external storage of the

devices are inspected to determine which data are generated by these actions and where they

are stored, and (c) these data are analyzed in order to decode them and to assign them their

correct meaning [3]. Doing so in a systematic manner, where all the relevant actions allowed by the

applications are considered, is a long, tedious, and error-prone task.

Moreover, the huge and always growing number of apps available to users, as well as the frequent

updates of existing ones, places a hard-to-sustain burden on the analyst, given that a new application
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(or a new version of an existing application) must be analyzed before the reconstruction of user

activity may take place. For these reasons, the idea of automating the forensic analysis of mobile

applications has recently received the attention of the scientific community [5, 13, 22].

In order to be adequate, an automated solution for the forensic analysis of mobile applications

should provide:

1. fidelity, i.e. the ability to reproduce, as faithfully as possible, the interactions that a human

experimenter would have with the application under analysis in order to perform the actions

of investigative interest;

2. completeness, i.e. the ability to identify all the data that are generated/modified by the

application as effect of the above actions;

3. soundness, i.e. the ability to exclude data generated by other applications/services running

on the same device used to carry out the experiments;

4. effectiveness, i.e. the ability to correlate each user action of interest with the data it modi-

fied/generated;

5. repeatability, i.e. the ability to provide to a third party the possibility of replicating the same

set of experiments and to obtain the same results;

6. generality, i.e. the ability of generating results that hold for as many different devices as

possible (possibly all).

Existing proposals for the automation of the forensic analysis of mobile applications [5, 13, 22]

exhibit only a subset of the above features (see the related work in Sec. 2), hence they do not

represent a completely satisfactory solution.

In this paper we fill this gap by proposing AnForA (acronym for Android Forensics Automator),

a system that automates the forensic analysis of Android applications. AnForA is based on a novel

analysis methodology (that extends the approach proposed in [3]), that ensures the achievement

of repeatability, and generality. This methodology provides the basis for the design of a software

architecture whose components interact among them to achieve fidelity, completeness, soundness,

and effectiveness. Furthermore, these components fully automate the execution of the experiments

required to characterize the behavior of mobile applications, the collection of the results generated
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in them, and the correlation of each action performed in these experiments with the data they

generate.

In particular, AnForA is based on a dynamic “black box” approach, in which the application

to be analyzed is first installed on a virtualized Android device, and then a set of experiments

are carried out, in which actions of interest are automatically performed on the application by

emulating a human user that interacts with its interface. During the experiments, the filesystems of

the device storage are actively monitored, so that the data created or modified by each one of these

actions can be located and correlated with that action.

We have devised a proof-of-concept implementation of AnForA that couples off-the-shelf software

components already available in the Android ecosystem with components purposely developed by

us. We experimentally evaluate the ability of AnForA in achieving the goals mentioned above, by

using the above implementation to carry out the forensic analysis of several Android applications

already studied in the literature, so that we can compare AnForA’s results with those reported in

these papers. The results of our evaluation confirm that AnForA exibits all the properties mentioned

above, namely fidelity, completeness, soundness, effectiveness, repeatability, and generality.

The rest of this paper is organized as follows. In Sec. 2 we discuss related works. Then, in Sec. 3

we present the design and the implementation of AnForA, while in Sec. 4 we illustrate its practical

use by using as example the Gmail app. Next, in Sec. 5 we report the results of the experimental

validation of AnForA, and in Sec. 6 we conclude the paper and outline future research work.

2. Related work

The forensic analysis of mobile applications has received a considerable attention in the recent

literature [1, 2, 3, 10, 11, 14, 15, 19, 20, 21], where a large set of different mobile applications have

been analyzed in order to identify and decode the artifacts they store on the device where they

run. In all these works, the analysis (i.e., the identification of the artifacts, their location, and their

decoding) has been carried out manually. However, the high complexity of the applications makes

the manual approach cumbersome, time consuming, and prone to errors. Hence, the need for an

automated solution clearly emerges from these works.
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The problem of automating the forensic analysis of mobile applications has recently received a

significant interest in the literature, where various proposal – focusing on the automatic identification

and decoding of the data that are generated by Android applications during their execution – have

been published [5, 13, 22].

In particular, ForDroid [13] and EviHunter [5] combine static code analysis, to discover all the

possible execution paths in the application code, with taint analysis, to track the flow of relevant

information from their sources (i.e., the places in the code where these data are generated) to

their sinks (i.e., the places in the code where these data are written to the file system). However,

both approaches suffer from the following drawbacks, due to the fact that they rely on static code

analysis:

1. Sources and sinks, that correspond to specific methods of the Android API (e.g., those that

are used to obtain GPS coordinates) or to specific variable types (e.g., strings), must be

known in advance. However, gaining such knowledge is not trivial, as it requires a complex

analysis of the Android API, that must be repeated each time the above API changes [5].

2. They lack soundness and effectiveness: static analysis, on which they rely, merely enumerates

all the possible execution paths within the code of the application, instead of considering

only those corresponding to the actions chosen by the analyst. Hence, they identify also data

which do not correspond to the actions chosen by the analyst (lack of soundness), and are

unable to correlate each user action with the data it generates (lack of effectiveness).

3. They lack completeness, since are unable to deal with (a) code paths that cannot be determined

statically (e.g., those that contain multithreading or reflection [5]), (b) applications that are

highly obfuscated [16], and (c) with service requests, issued by the app, that are served by

other apps or system services available on the device.

To overcome the limitations of static analysis, [22] proposes an approach based on dynamic

taint analysis, which is based on the execution of the application of interest on a modified version

of the ART Android runtime.

This approach, however, suffers from drawbacks similar to those characterizing static analysis.

In particular, it lacks effectiveness, and requires the knowledge of the sources and sinks in the
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applications. Furthermore, it lacks completeness, since it is unable to deal with applications that

use native code, or that exhibit implicit data flows [22].

In contrast, AnForA does not present anyone of the problems affecting the alternative solutions

mentioned before. As a matter of fact, it is explicitly driven by the user actions that have been

chosen by the analyst, and therefore (a) identifies only those data that are created or modified as

direct consequence of these actions, disregarding instead data generated by other actions (soundness),

and (b) is able to correlate each of the chosen actions with the data it generates (effectiveness).

Finally, AnForA is based on a dynamic “black box” approach and not source code analysis, and

therefore is not hindered by the presence, within the application, of code obfuscation techniques or

of dynamic code update mechanisms (completeness).

3. The AnForA System

As anticipated in the Introduction (Sec. 1), AnForA is based on a methodology for the forensic

analysis of mobile applications that has been specifically conceived in order to provide repeatability

and generality. This methodology provides the basis for its architecture, that encompasses various

components that interact among them to provide fidelity, completeness, soundness, and effectiveness

through the full automation of the execution of analysis experiments, the identification of the

location and format of all (and only) the data generated during these experiments, and their

correlation with the actions that generated them.

In this section we first describe the analysis methodology (Sec. 3.1), then we describe the

architecture of AnForA (Sec. 3.2), and its proof-of-concept implementation (Sec. 3.3).

3.1. The Analysis Methodology

The methodology providing the foundations of AnForA is based on the design of a set of

experiments, each one focusing on one of the operations allowed by the application under analysis

(e.g., sending a text message or a picture), on their systematic execution using the application on a

mobile device, on the inspection of the device storage during and after each experiment (so as to

identify the data generated during it), and on the analysis of the generated data to determine their

meaning and context.
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Generality and repeatability, that are the main goals of this methodology, are achieved through

the use of virtualized mobile devices in place of physical ones. A mobile virtualization platform

makes indeed simple and cost-effective to run experiments on a multitude of different virtual

smartphones (featuring different hardware and software configurations), thus yielding generality.

Furthermore, it allows a third-party to easily replicate experiments on the same smartphone

models and configurations, as well as to enforce the same operational conditions holding during the

experiments, thus yielding repeatability.

The methodology, whose workflow is schematically depicted in Fig. 1, is articulated in a sequence

of steps, as discussed below.

Figure 1: Workflow of the analysis methodology for mobile applications.

First, the functionalities of the application under consideration are analyzed, in order to identify

its actions that have a potential investigative interest, and then suitable experiments, aiming at

eliciting the generation of the data corresponding to the above actions, as well as their storage on

the local memory of the device, are designed.
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Next, in the Application installation step the application is installed on the device. Then, in

the Application footprint characterization step, the set of directories that contain data generated

either directly or indirectly by the application (the Analysis Paths) are identified, so that they can

be monitored during the execution of the experiments in order to detect changes to the data they

store. Furthermore, the data generated during the installation is also collected and examined, and

the results of this analysis are stored into the Artifact location and format database.

After these preparatory steps, the set of experiments is carried out in a systematic way, until

all of them have been completed. As shown in Fig. 1, each experiment consists in a set of actions,

carried out by the analyst in a predefined order by interacting with the application user interface.

At the beginning of the experiment, and also after each action of the experiment is completed, a

snapshot of the contents of the Analysis Paths may be collected and stored for subsequent analysis.

After all the actions of a given experiment have been completed, the various snapshots are

compared in order to identify which files have been created, deleted and/or updated as effect of

each action. Furthermore, snapshots may be searched for known information (e.g., the text of a

message that has been sent) to determine the data that have been written in, or deleted from, the

above files. These findings, jointly with the association of each artifact with the (set of) action(s)

that generated them, are recorded into the Artifact location and format database.

3.2. The Architecture

To carry out the analysis according to the above methodology, AnForA couples a mobile

virtualization platform, enabling the configuration of, use of, and interaction with a virtual device

where the app under analysis is installed and executed, with an analysis machine, where its software

components run and where the data extracted from the mobile device are stored and analyzed.

The architecture of AnForA is shown in Fig. 2, while in Fig. 3 we show how its components

automate the various steps of the analysis methodology, by annotating each one of them with the

corresponding component automating it.

As shown in Fig. 2, AnForA consists of seven components, whose role is detailed below:

1. The App Installer, which installs the application to be analyzed on the virtual mobile device,

thus automating the Application installation step. In particular, the App Installer takes as
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Figure 2: AnForA architecture.

Figure 3: The workflow of AnForA. Annotations are shown as gray boxes attached via a dotted connector to the
methodology steps it is used in.
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input the installation file of the application (the APK file), extracts from it the Manifest file

that lists the permissions the application needs to function properly, and executes suitable

commands to install the application, as well as to grant the permissions it needs.

2. The User Emulator, which interacts with the application to perform sequence of actions that

make up an experiment by using the application Graphical User Interface (or GUI, for brevity)

exactly as a human user would do. These actions are specified by the analyst into an action

file, using a suitable command language (see Sec. 3.3) As shown in Fig. 3, the User Emulator

automates the execution of the experiments.

3. The Analysis Paths Detector, which automates the Application Footprint Characterization.

In particular, it determines the folders, in the internal and external storage of the device,

where the application can write data (the Analysis Paths). More specifically, the Analysis

Path Detector identifies, and includes in the Analysis Paths, the following folders:

• the private data folder of the application, i.e. the private directory where the application

may write data;

• the additional folders of the applications, i.e. public directories where the application

may write if it is granted the corresponding write permissions;

• the EC private and additional folders, i.e. those folders where third-party applications or

system services (henceforth referred to as External Component or EC for brevity), write

data on the behalf of the app when it requests service to them.

4. The FSWatcher, which runs on the mobile device, and monitors all the folders in the Anal-

ysis Paths to detect which files are created/deleted/modified during the experiments. The

FSWatcher works in close interaction with the Retriever, from which it receives the start/stop

monitoring commands (see below), and to whom it reports the results of the monitoring

sessions.

5. the Retriever, which retrieves the set of files reported by the FSWatcher, and creates a snapshot

that is stored on the analysis machine. In particular, as shown in Fig. 3, at any time during

the experiment, the Retriever may get a snapshot of the contents of each directory in the

Analysis Paths if specified in the action file, and tells the FSWatcher to start its monitoring
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activity. Then, monitoring is stopped at the end of each action of a given experiments, when

the Retriever gets a new snapshot.

6. The Difference Extractor, which compares two versions of the same file contained in different

snapshots, in order to find which data have been added to/removed from/modified in that file,

and associates these data with the corresponding action. In particular, as shown in Fig. 3, the

Difference Extractor comes into play at the end of each experiment to examine all the pairs

of consecutive snapshots to identify all the files that have been created/modified/deleted as

effect of the action corresponding to the second snapshot of each pair. For each one of these

files, the Difference Extractor locates the portions that have been modified, decodes them (if

it knows their encoding scheme), and writes this information into a report. At the end of

the experimental campaign, the report contains – for each individual experiment – the list of

the files that have been added/created/modified/deleted by each one of its actions. In this

way, the analyst can establish the correspondence between each user action, and the artifacts

it generates. Furthermore, the report contains also – for each one of the above files – which

data have been modified, and where this data are located within it, thus enabling the analyst

to quickly focus the analysis of them.

7. The GUI, which provides the analyst with the access to the various functionalities of AnForA,

and allows him/her to control the various steps of the analysis workflow by controlling the

operations of its components.

Jointly, AnForA components provide fidelity, completeness, soundness, and effectiveness, as

discussed below:

• fidelity is ensured by the App Installer, which reproduces all the steps that a human user

would have to do to install the app (including the grant of the permissions it requires), and

by the User Emulator, which interacts with the application via its user interface exactly as a

human user would do (i.e., by issuing commands like swipe or tap on the screen, as well as by

typing on the keyboard);

• completeness is ensured by the Analisys Paths Detector, which is able to identify all the device

folders belonging to the Analysis Paths of the application, and by the FSWatcher, which
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identifies all the files, stored in these paths, that are modified by the application during the

experiments;

• soundness is achieved by means of the FSWatcher, which identifies only the files modified by

the application;

• effectiveness is provided by the Difference Extractor, which is able to (a) precisely locate, in

the file storing them, the data generated by each action, and (b) correlate the above action

with the corresponding data.

It is worth noting that AnForA supports the execution of experiments where multiple users

interact among them using the application under analysis, or even different applications. To do so,

it is sufficient to start as many instances of AnForA are necessary, either on the same or on different

analysis machines, and provide to each instance its specific actions file.

3.3. The Implementation

We have developed a proof-of-concept implementation of AnForA, which relies on a mix of freely

available tools and of software components that we developed specifically for it using the Python

and the C++ languages, as discussed below.

First of all, for the configuration and use of virtualized mobile devices, AnForA relies on the

Android Mobile Device Emulator [9], a software tools running on the analysis machine that allows

the creation and the execution of the so-called Android Virtual Devices (AVDs), i.e. emulated

smartphones behaving exactly like real physical devices that can be customized with different

hardware characteristics and Android versions.

The components of AnForA running on the analysis machine interact with those running within

the virtual device, as well as with its Android operating system, by means of the Android Debug

Bridge (ADB) service [6], that is part of the standard Android SDK [7].

In the following, we briefly discuss how each one of the components of AnForA has been

implemented.

• The App Installer is implemented as a Python script that uses suitable ADB commands to

install the app using its APK file, and to grant it the permissions it needs to function properly.
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These permissions are automatically extracted from the AndroidManifest.xml file, which is

contained in the APK file of the application. The App Installer also installs the FSWatcher on

the AVD and suitably sets port forwarding on it to enable the FSWatcher – User Emulator

network communications.

• The User Emulator is implemented in Python by means of the UI Automator testing frame-

work [8], that provides a set of APIs to build UI tests that perform interactions on user apps

and system apps. This APIs allows to programmatically interact with the various components

of the application GUI by emulating via software typical user gestures such as tap, swipe,

long tap and so on. In particular, the User Emulator reads from the actions file the sequence

of actions it has to perform on the application user interface, and for each one of them calls

the appropriate function of the UI Automator API. The User Emulator currently supports the

actions listed in Table 1 below. To find out the identifier of a widget, or its position on the

Action name Description

Home Go to the device home screen

Back Tap on the back button

TapOn(widgetId) Tap on the widget identified by widgetId

TapXY(x,y) Tap on point 〈x,y〉 of the screen

SetTxt(widgetID,t) Insert text t into the widget identified by widgetId

SetTxtXY(x,y,t) Insert text t into the widget placed on position
〈x,y〉 of the screen

Dump stops the FSWatcher, extract from the device the
list of files it reports, and then restarts it.

Table 1: Actions supported by the User Emulator

screen, the analyst uses the UI Automator Viewer, a tool which is part of the UI Automator

framework (see Sec. 4 for the discussion on how to use it).

• the Analysis Path Detector is implemented as a Python script that performs the following two

actions:

1. it parses the APK file of the application to extract the information concerning the

corresponding private and additional folders (from the AndroidManifest.xml file);

2. it discovers the EC private and additional folders by performing a “dry run” (i.e., a run
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in which no data are collected from the device memory) in which the User Emulator

carries out all the experiments defined by the analyst. As a matter of fact, ECs can be

determined only at run-time, since they depend on specific choices made by the user

when the application runs. By performing a dry run, the application is forced to issue

all the service requests to the ECs it uses. The information about these requests (called

intents in the Android jargon) are recorded by Android into a log file that, after all the

experiments have been performed, is extracted and analyzed, so that the Analysis Path

Detector can identify the above ECs. At the end of the dry run, the virtualized device is

brought back to a clean state, so that all the modifications it induces are wiped away.

• The FSWatcher is implemented as a C++ program, and relies on the Linux’s inotify mechanism

for watching filesystem events under specific root paths. For each given root path to watch,

the FSWatcher recursively monitors its entire subtree and can follow all symbolic links found

therein. On stopping, the FSWatcher produces a report containing all the changes that took

place in the monitored paths since when started. The FSWatcher is installed by he App

Installer and it communicates with the User Emulator through a socket interface by means of

which they exchange JSON messages.

• The Retriever is implemented as a Python script that use ADB commands to retrieve files

from the Android device to the analysis machine, and it is invoked any time a Dump action is

specified in the action file.

• The Difference Extractor is implemented as a Python script that uses the magic Linux utility

to determine the type of the file it needs to process, and calls the appropriate diffing utility.

In the current implementation, it is able to compute the differences between text and binary

files (using the diff Linux utility), and SQLite databases (using the SQLDiff utility).

• The GUI is implemented in Python and uses the PyQt Python bindings for the Qt cross-

platform framework.
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4. GMail application use case

To illustrate how to use AnForA, in this section we discuss how to set up and run an experiment

in which the Gmail email app is used to compose and send a message to a specific destination

address.

First of all, we need to specify the sequence of actions, that need to be carried out to compose

and send the message, using the User Emulator language. More specifically, this sequence consists in

the following actions:

1. bring the device to the main screen by tapping on the “home” button of its interface, so that

the icons of all the installed apps are shown;

2. start the Gmail app by tapping on the corresponding icon;

3. open the “compose” window by tapping on the Compose button of the application GUI;

4. fill the to, subject, and message body text boxes shown on the application GUI;

5. send the message by tapping on the send button of the application GUI.

As discussed in Sec. 3.3, for each one of these activities, it is necessary to determine either the

identifier of the corresponding widget, or its position on the screen. The identifier of a widget is

stored into either one of two properties of the widget (i.e., attributes that can store values), namely

either the content-desc or the resource-id property, while its position on the screen is stored in the

bounds property.

As discussed in Sec. 3.3, both information can be retrieved by loading in the UI Automator

Viewer the window of the GUI where the widget of interest is placed, and by using it to inspect its

properties.

Fig. 4 shows how to identify the icon corresponding to the Gmail app using the UI Automator

Viewer, which is shown in the left side pane. When the analyst selects this icon, its properties –

and in particular content-desc – are shown in the bottom-right pane. From this property it can

be seen that the identifier of the Gmail icon is “Gmail”, so the User Emulator action that launches

the Gmail app is set to TapOn(Gmail).

In the same way, the “compose” window is opened by tapping on the Compose button of the

application GUI, whose identifier is stored – as shown in Fig. 5 – in the resource-id property (note
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Figure 4: Identification of the Gmail icon.

that the content-desc property could have been used equivalently). Hence, the User Emulator action

that opens the “compose” window is TapOn(com.google.android.gm:id/compose button).

To compose and send a message, the User Emulator needs to place suitable textual information

into the destination address, the subject, and the email body text boxes; hence, the corresponding

widgets need to be identified. For the first two text boxes, we proceed exactly as described above,

i.e. we use either the content-desc or the resource-id properties, so we do not discuss it here again.

However, as shown in Fig. 6, the position on the screen of the email body text box needs to be

used, since the above two properties are empty. The screen position of this widget, which is stored

in the bounds property, corresponds to the rectangle whose opposite edges correspond to points

(42, 654) and (1039, 794). To identify the widget, any point falling inside this rectangle – e.g.,

(50, 700) – may be used. Hence, the User Emulator action that fills the email body text box is

SetTxtXY(50,700,"Test Message #1 - body").

The resulting action file, that will be provided as input to the User Emulator, contains the

following actions:

1. TapOn(Home)
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Figure 5: Identification of the Gmail Compose button.

Figure 6: Identification of the email body text box.
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2. TapOn(Gmail)

3. TapOn(com.google.android.gm:id/compose button)

4. SetTXT(com.google.android.gm:gm-to,"janedoetest@outlook.com")

5. SetTxt(com.google.android.gm:gm-subject,"Test message # 1 - subject")

6. SetTxtXY(50,700,"Test Message #1 - body")

7. TapOn(com.google.android.gm:id/send)

Now, the experiment may be carried out by means of the AnForA’s GUI, which is shown in

Fig. 7, and provides various buttons, each one corresponding to a specific step of the analysis

methodology.

Figure 7: The AnForA main screen.

In particular, the app is installed via the Install APK on the device button, which prompts the

analyst to specify the path name of the APK, and to click on the Install button (see Fig. 8). At

the end of the installation, AnForA notifies the user with the outcome of the operation.

The other actions, namely the detection of the analysis paths, and the execution of the experiment,

are carried out by means of the Detect analysis paths and Start experiment. When the experiment

is done, AnForA notifies the analyst (see Fig. 9), and enables him/her to download the results and

to analyze them using the Download results button.
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Figure 8: The APK installation menu. The figure has been cut to show only the information of interest.

Figure 9: The experiment has been completed. The figure has been cut to show only the information of interest.
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At this point, once the analyst clicks on the Analyze results button, (s)he is presented with

the set of snapshots generated as consequence of the various Dump actions in the action file. By

selecting two different snapshots, the analyst is presented with the list of files that have been created,

modified or deleted in the second snapshot with respect to the first one (Fig. 10).

Figure 10: List of files that differ among two snapshots.

As shown in the figure, for each file AnForA reports its status (one of created, modified, or

deleted), the identifier of the snapshot containing the file, its pathname on the device file system

where it is stored, its name, and its type, and allows the analyst to visualize the file (in case it

has been created or deleted), or the changes occurred in this file as a consequence of the actions

corresponding to the last snapshot.

For instance, from Fig. 10 we see that file in row 5 has been created in snapshot 2 (i.e., it

was not present in snapshot 1), while file in row 7 has been deleted (hence, it is contained in

snapshot 1 only).

By clicking on the Action column of each file, AnForA shows the changes occurred in that

file from the first to the second snapshot. Fig. 11 shows the changes occurred in the text file
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Account-dcstestupo@gmail.com.xml as consequence of sending an email message using the Gmail

app. As can be seen from the figure, the contents of that file in the two snapshots are shown

Figure 11: AnForA shows what has been changed in file Account-dcstestupo@gmail.com.xml.

side-by-side, and the lines that have been added (labeled as new line), removed (labeled as removed

line), or modified (labeled as line modified) are suitably identified.

In addition to text files, in its current implementation AnForA is able to identify and show the

differences also in SQLite databases, while for file whose encoding is not supported it only pinpoints

the blocks of data that differ between two snapshots.

5. Validation

In order to validate the results generated by AnForA, and in particular its ability to provide

completeness and soundness, we use it to perform the forensic analysis of Android apps already

analyzed in the literature, so that the results it yields can be compared against those that have

been already published.

More specifically, we consider the following apps:

• Google Gmail: we analyze version 8.5.6.199637500, and compare AnForA’s results against

those reported in [4, 18] (both referring to an unspecified version);
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• Microsoft Skype: we analyze version 8.37.0.98, and compare AnForA’s results against those

reported in [4] (for version 6.31.0.709), [17] (for an unspecified version), and [18] (for an

unspecified version);

• Facebook Messenger: we analyze version 113.0.0.21.70, and compare AnForA’s results against

those reported in [4] (for version 68.0.0.22.67), [12] (for version 86.0.0.17.70), and [23] (for

version 113.0.0.21.70).

All the experiments have been performed on a virtualized mobile device running Android 9 for the

Intel Atom x86 64 platform.

The results of our validation can be summarized as follows. AnForA has been able to identify

and locate all the data reported in the literature for the applications we considered. In most

cases, however, these data were stored in different files and/or different paths than those previously

reported; we believe this is a direct consequence of the fact that in our experiments we considered

later versions of these applications and of Android.

Furthermore, for the Gmail application, AnForA found artifacts that had not been previously

reported in the literature. This could also be due to differences in the versions of Gmail considered

in these studies with respect to the one we use in our experiments.

The results of our experiments demonstrates the ability of AnForA of achieving completeness,

as it has been able to find – for each application – all (actually, even more) the data reported in

previous studies. Furthermore, they also demonstrate soundness, since for each application, only

the data it generates have been included by AnForA into its reports. Finally, our experiments also

demonstrate the advantage of using AnForA instead of manual analysis, both in terms of time

and effectiveness, as it enables to quickly and accurately repeat the analysis of new versions of

already-analyzed applications when needed.

In the following, we discuss the comparison of AnForA’s results against those obtained in

published works for Gmail (Sec. 5.1), Skype (Sec. 5.2), and Facebook Messenger (Sec. 5.3).
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5.1. Google Gmail

The results of the analysis of Gmail are reported in Table 2, in which we compare the relevant

files identified by AnForA (column AnForA) against those reported by [4, 18] (column Literature).

Table 2: Location of artifacts for Google Gmail. Unless otherwise specified, all paths are relative to
/data/data/com.google.android.gm.

Row Artifact Location
AnForA Literature

1 Preferences shared prefs/*.xml shared prefs/*.xml

2 Account details (Google account) shared prefs/MailAppProvider.xml, cache/<username>@gmail.com.db

3 Messages (Google account) databases/bigTopDataDB.<account-id> databases/mailstore.<username>@gmail.com.db

4 Attachment metadata (Google account) databases/metadata.<account-id> cache/<username>@gmail.com/

5 Attachment files (Google account) files/downloads/ cache/<username>@gmail.com/

6 Account details (IMAP account) shared prefs/MailAppProvider.xml, n/a
databases/EmailProvider.db

7 Messages (IMAP account) databases/EmailProvider.db n/a
8 Attachments metadata (IMAP account) databases/EmailProvider.db n/a
9 Attachment files (IMAP account) cache/*.attachment n/a
10 Third-party services Android’s account files, n/a

Google Mobile Services’ files

As in the studies already appeared in the literature, AnForA found that the installation folder of

Gmail is /data/data/com.google.android.gm. However, it also found several important differ-

ences with respect to them, namely:

• There are differences in the location and contents of the data generated when using a Google

email account with respect to using an account of another provider via the IMAP protocol.

• For Google email accounts, AnForA identified the same data reported in the literature, but

located them in different files and folders (rows 2 − 5 in Table 2).

• For generic email accounts, AnForA found that Gmail generates data not identified by previous

studies (rows 6 − 9 in Table 2), and in particular:

– When a new generic account is registered in Gmail, a new record is added to table Account

of database databases/EmailProvider.db to store account information, including the

email address, the display name and the sender name. Furthermore, a file named

Account-<imap server>.xml is created to store cipher settings for the IMAP server

<imap server> associated with this account.

– Messages are stored in table Message of database databases/EmailProvider.db.
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– Attachment metadata are stored in table Attachment of database databases/EmailProvider.db.

– Downloaded attachment contents are saved as files, named as <name>.attachment, in

the cache subdirectory, where <name>.attachment encodes the download timestamp

(e.g., 2019-02-27-21:57:157770246422182752973.attachment). These attachments

are also stored as URIs in field cachedFile of table Attachment (so that a downloaded

attachment can be easily related to its metadata).

• Unlike previous studies, AnForA has been able to identify two third-party services (namely,

Android account service and Google Mobile Service) that are used by Gmail, and that

may write – in their folders – data generated on the behalf of Gmail. In particular,

when an account is added to Gmail, a related entry is also added to the device’s ac-

counts by updating the Android’s contacts database contacts2.db located in the directory

/data/data/com.android.providers.contacts/databases. Furthermore, for Google ac-

counts, the Google Mobile Services collection is also updated accordingly by updating the corre-

sponding databases located in the directory /data/data/com.google.android.gms/databases.

5.2. Microsoft Skype

The results of the analysis of Skype are reported in Table 3, in which we compare the relevant files

identified by AnForA (column AnForA) against those reported by [17, 4, 18] (column Literature).

Table 3: Location of artifacts for Skype. Unless otherwise specified, all paths are relative to
/data/data/com.skype.raider.

Artifact Relevant paths
As reported by AnForA Literature

Contacts, conversations, and databases/s4l-live:<username>.db files/live#3 <username>/main.db [4],
call logs files/<username>/main.db [17, 18]
Shared media metadata databases/s4l-live:<username>.db files/<username>/main.db [18]
Shared media files cache/FileCache/ files/live#3 <username>/media messaging/media cache/ [4],

cache/ [17]

Unlike the Gmail case, the results obtained by AnForA for Skype agree with those reported in

the literature, as far as the data that are generated by this app are concerned, while differences

have been found with respect to the location of these data, as shown in Table 3. Hence, we do not

discuss the contents of these files here (the interested reader may refer to the literature for this

discussion).

25



5.3. Facebook Messenger

The results of the analysis of Facebook Messenger are reported in Table 4, in which we compare

the relevant files identified by AnForA (column AnForA) against those reported by [4, 12, 23] (column

Literature). Again, as in the Skype case, the results obtained by AnForA agree with those reported

Table 4: Location of artifacts for Facebook Messenger. Unless otherwise specified, all paths are relative to
/data/data/com.facebook.orca.

Artifact Relevant paths
As reported by AnForA Literature

Contacts databases/contacts db2 databases/contacts db2 [4, 23]
Conversations databases/threads db2 databases/threads db2

Call logs databases/call log.sqlite databases/call log.sqlite [4]
Shared media files cache/fb temp/ cache/fb temp/ [4],

cache/, files/ [12, 23]

in the literature as far as the data that are generated by this app, while differences have been found

with respect to the location of these data, as shown in Table 4. Therefore, as for the Skype results,

we do not discuss the contents of these files here (the interested reader may refer to the literature

for this discussion).

6. Conclusions and future work

In this paper we have presented the design, implementation, and evaluation of AnForA, a

software tool that automates most of the activities that need to be carried out to forensically

analyze Android applications designed in such a way to yield various properties namely fidelity,

completeness, soundness, effectiveness, repeatability, and generality. In particular, AnForA relies

on the use of virtualized Android devices, on which the application is installed, and on a set of

software components that (a) interact with its interface as a human user would do, (b) monitor the

changes to the file systems induced by these interactions, (c) extract modified files, and (d) locate

these modifications.

We have devised a proof-of-concept implementation of AnForA, and we have used it to assess its

ability in achieving its design goals, by analyzing through it several Android applications already

studied in the literature, so that we can compare AnForA’s results against those reported in these
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papers. The results of our evaluation confirm that AnForA greatly simplifies the forensic analysis of

Android applications, and exhibits all the properties mentioned above.

As future work, we plan to extend AnForA’s capabilities in decoding files along two directions:

(a) integrate in it suitable helper applications able to decode files whose encoding is known (e.g.,

PDF or Microsoft Office files), and (b) use machine learning techniques to enable it to automatically

discover the proprietary encoding schemes that many application use for the data they store on the

device (e.g., applications that serialize complex data structure containing fields of different types).
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