Bayesian Belief Networks in Reliability

Prof. Luigi Portinale, Ph.D.

Department of Computer Science University of Piemonte Orientale "A. Avogadro" Alessandria (Italy)

Overview

- Dependability/Reliability issues
- Main Model Types for Reliability
- Probabilistic Graphical Models (BN and DBN)
 - Modeling
 - Computing
- From (Dynamic) Fault Trees to (Dynamic) Bayesian Nets
 - Modeling
 - Computing
- Case Studies
- Tools
- Open Issues

Overview

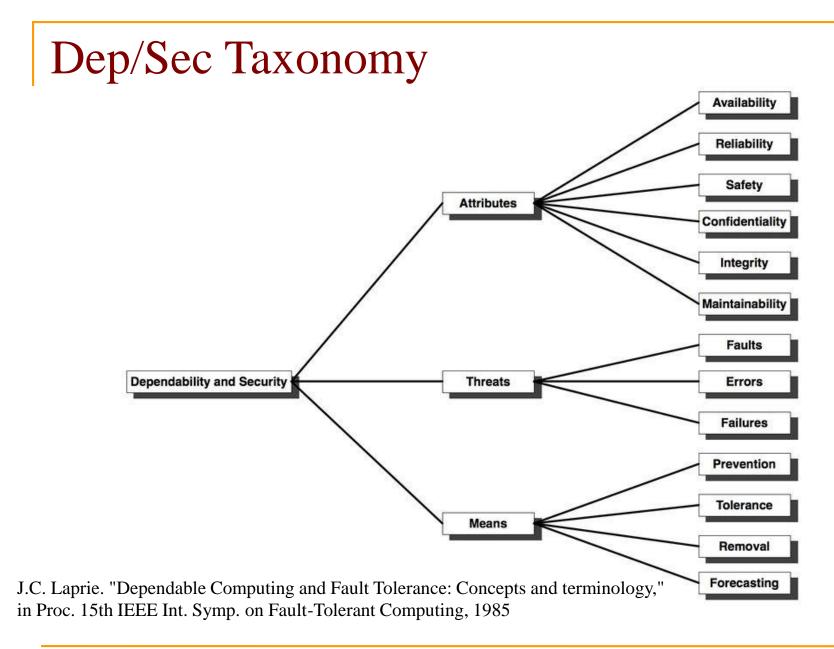
- Dependability/Reliability issues
- Main Model Types for Reliability
- Probabilistic Graphical Models (BN and DBN)
 - Modeling
 - Computing
- From (Dynamic) Fault Trees to (Dynamic) Bayesian Nets
 - Modeling
 - Computing
- Case Studies
- Tools
- Open Issues

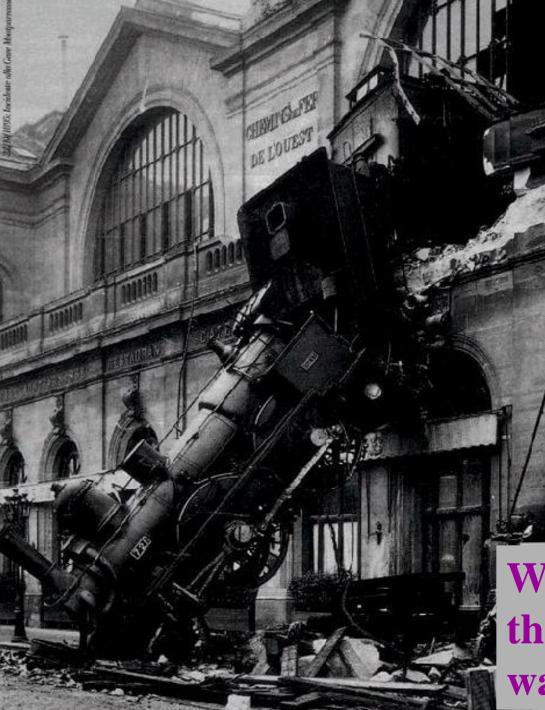
Dependability vs Reliability

We adopt the term dependability to identify the ability of a system to deliver service that can justifiably be trusted.

Dependability is an integrating concept that encompasses various attributes:

- **Reliability**: continuity of correct service.
- Availability: readiness for correct service.
- Maintainability: ability to undergo modifications and repairs.
- **Safety**: absence of catastrophic consequences.
- (Security)





22/10/1895: Gare Montparnasse.

What dependability theory and practice wants to avoid

Are these connections reliable ?

Some technicalities...

Reliability: R(t)

probability that the system performs the required function in the interval (0, t) given the stress and environmental conditions in which it operates. $e \cdot E = 1 \cdot e^{-t}$

- Unreliability: U(t) = 1-R(t)probability that the system is not performing the required function at time *t*. MTTF
- Availability: $A = \frac{E[\text{Uptime}]}{E[\text{Uptime}] + E[\text{Downtime}]}$ MTTR
 - $X(t) = \begin{cases} 1, & \text{sys functions at time } t \\ 0, & \text{otherwise} \end{cases} \quad A(t) = \Pr[X(t) = 1] = E[X(t)]. \quad A = \lim_{t \to \infty} A(t).$

A(t)=R(t) if repear is absent

Some technicalities...

- Failure: a <u>system</u> deviation from the correct/expected service (*failure modes*)
- **Fault**: a cause of a failure (a defect in the system)
- Error: a discrepancy between the intended behaviour of a <u>system component</u> and its actual behaviour
- Fault-Error-Failure chain: a fault, when activated, can lead to an error (which is an invalid state) and the invalid state generated by an error may lead to another error or a failure (which is an observable deviation from the specified behaviour at the system boundary)
- The chain can actually be a loop (having faults causing failures, causing other faults, causing other failures, etc...)

Reliability Evaluation

Measurement-based evaluation

- It requires the observation of the behaviour of the system physical components.
- □ It may be expensive or unpractical.

Model-based evaluation

- A model is a convenient abstraction of the system.
- □ A model has a certain degree of accuracy.
- □ A model can be the object of analysis or simulation.
- Models classification:
 - Combinatorial models
 - State space based models
 - Models with conditional local dependencies

Overview

- Dependability/Reliability issues
- Main Model Types for Reliability
- Probabilistic Graphical Models (BN and DBN)
 - Modeling
 - Computing
- From (Dynamic) Fault Trees to (Dynamic) Bayesian Nets
 - Modeling
 - Computing
- Case Studies
- Tools
- Open Issues

Modeling Properties

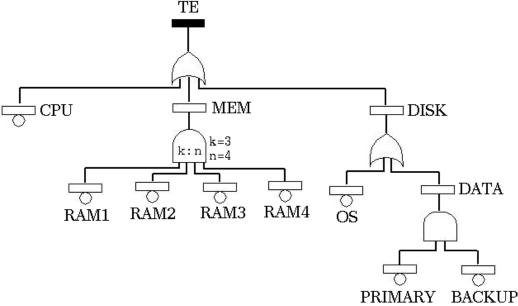
- Several modeling paradigms are available. The usability of a model can be classified according to two main properties:
- The Modeling Power Refers to the ability of the model to allow an accurate and faithful representation of the system;
- The Decision Power Refers to the ability of the model to be analytically tractable and to provide results with a low space and time complexity.

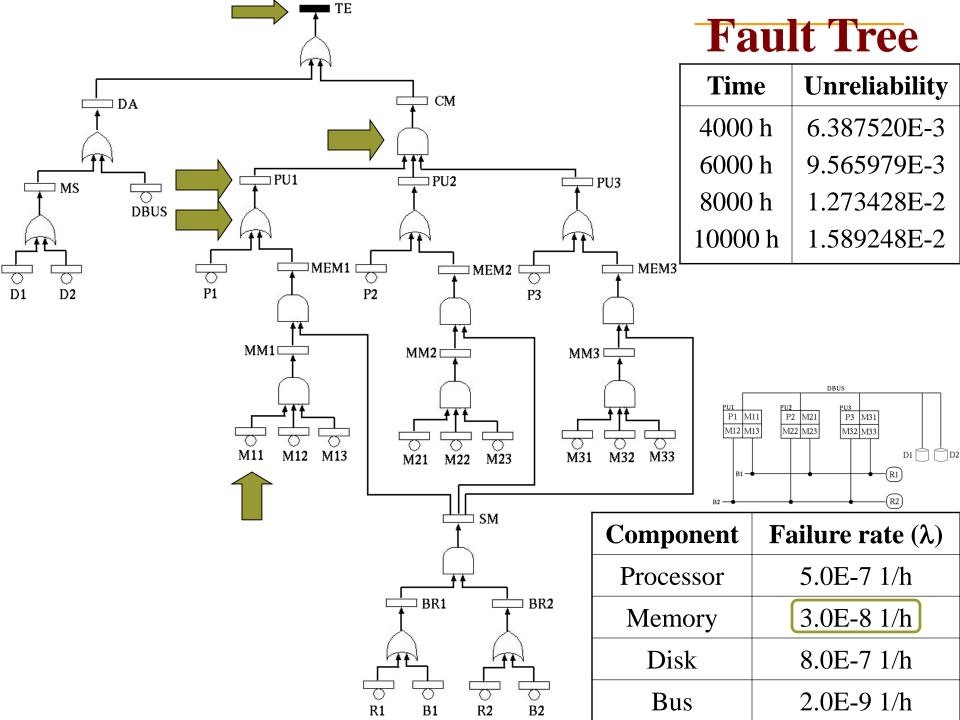
Model Types

- **Combinatorial models** assume that components are statistically independent: poor modeling power coupled with high analytical tractability.
- State-space models rely on the specification of the whole set of the possible system states and of the possible transitions among them.
- Local dependencies: between combinatorial and state space models, research is currently carried on to include localized dependencies

Combinatorial Models

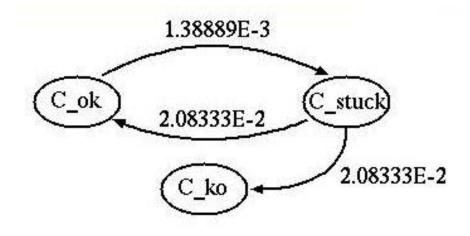
- They represent the structure of the system in terms of logical connection of working (failed) components in order to obtain the system success (failure).
 - Fault Trees, Reliability Block Diagrams, Reliability Graphs
 - Easy to use, concise, analytically tractable
 - Limited modeling power (binary independent components)





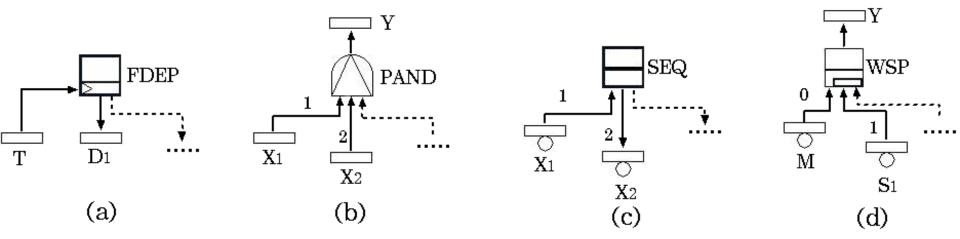
State Space Models

- They enumerate the set of meaningful states and state transitions of the system
 - Markov Chains, Markov Decision Processes, Petri Nets
 - State space may be over-specified with respect to the modeling needs
 - Dynamic behavior of the system may lead to the explosion of the state space size



Local Dependencies: Dynamic Fault Trees

- A dependency arises when the failure behaviour of a component depends on the state of the system.
- DFTs are characterized by the dynamic gates
 - Functional dependencies (FDEP gate)
 - Temporal dependencies (SEQ gate, PAND gate)
 - (Warm) spare components (WSP gate): multi-state components

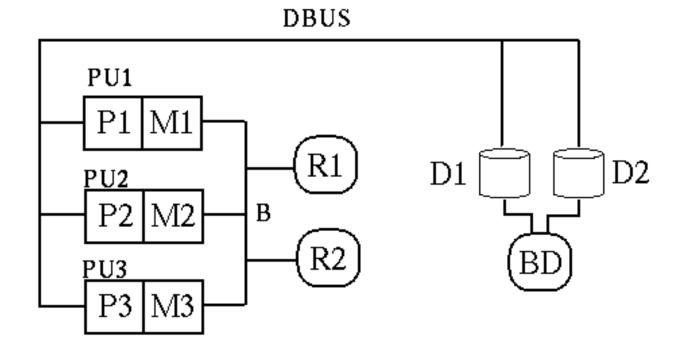


J. B. Dugan, S. J. Bavuso, M. A. Boyd, "Dynamic Fault-Tree Models for Fault-Tolerant Computer Systems", *IEEE Transactions on Reliability*, vol 41, 1992, pp 363-377

Modeling Spare Dependencies

- M is the main component; S is its spare component.
- States of S: λм Stand-by (dormant): $\alpha_s \lambda_s$ DORMANT WORKING Working: λ_s Failed λ_s is the failure rate $\lambda_{
 m S}$ α s λ s α_s is the dormancy factor FAILED Warm spare: $0 < \alpha < 1$ Cold spare: $\alpha = 0$
- Hot spare: $\alpha = 1$

Example: Multiprocessor Computing System

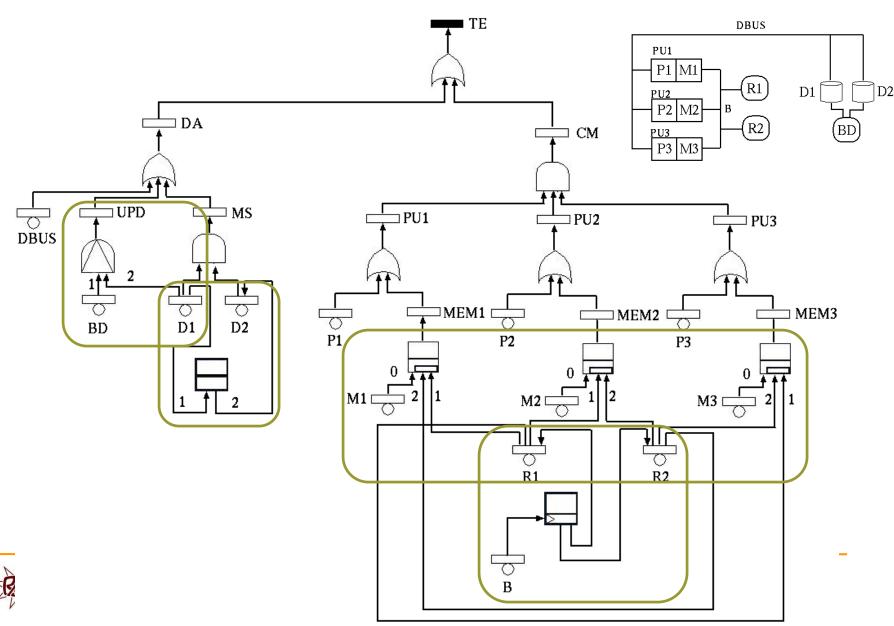


•R1 and R2 are warm spare memories. R1 and R2 functionally depend on the bus B.

•D1 is the primary disk; D2 is the backup disk. D2 can not fail before D1.

•BD is the device updating periodically D2. The failure of BD is relevant if it happens before the failure of D2.

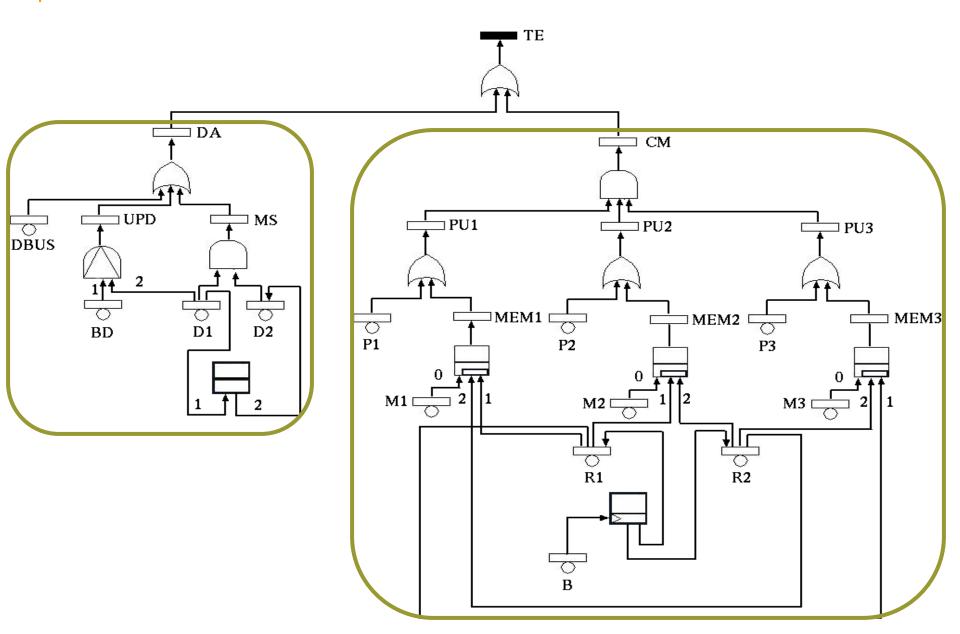
Example: Dynamic FT



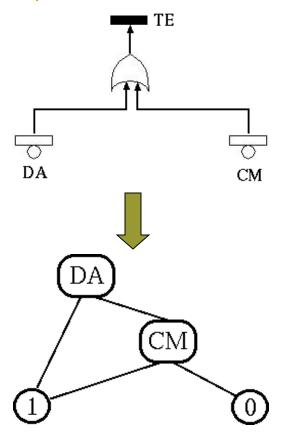
DFT Analysis

- Due to dependencies, DFTs need state space analysis.
- State space analysis can be limited to *dynamic* modules (Modularization).
- Modules analyzed through standard MC or through PN (e.g. GSPN)

Example: dynamic modules



Example: analysis results



Pr(DA)	Pr(CM)	Pr(TE)
GSPN	GSPN	BDD
5.3904E-6	9.99E-10	5.3914E-6
1.3555E-5	7.976E-9	1.3563E-5
2.4486E-5	2.6879E-8	2.4512E-5
3.8172E-5	6.3617E-8	3.8236E-5
5.4605E-5	1.2406E-7	5.473E-5
	GSPN 5.3904E-6 1.3555E-5 2.4486E-5 3.8172E-5	GSPNGSPN5.3904E-69.99E-101.3555E-57.976E-92.4486E-52.6879E-83.8172E-56.3617E-8

- Module DA: 14 states $\Rightarrow < 1$ sec.
- Module CM: 487 states $\Rightarrow < 1$ sec.
- Whole DFT: 7806 states \Rightarrow 12 sec.
 - Dentium 4, 2 Mhz, 512 MB

Overview

- Dependability/Reliability issues
- Main Model Types for Reliability
- Probabilistic Graphical Models (BN and DBN)
 - Modeling
 - Computing
- From (Dynamic) Fault Trees to (Dynamic) Bayesian Nets
 - Modeling
 - Computing
- Case Studies
- Tools
- Open Issues

Probabilistic Graphical Models

Static Models

- Bayesian Networks (aka Causal Networks, Probabilistic Networks, Belief Networks,...)
- Influence Diagrams
- Dynamic Models
 - Dynamic Bayesian Networks (2TBN)
 - Dynamic Decision Networks

Probabilistic Graphical Models

Static Models

- Bayesian Networks (aka Causal Networks, Probabilistic Networks, Belief Networks,...)
- Influence Diagrams
- Dynamic Models
 - Dynamic Bayesian Networks (2TBN)
 - Dynamic Decision Networks

Bayesian Networks

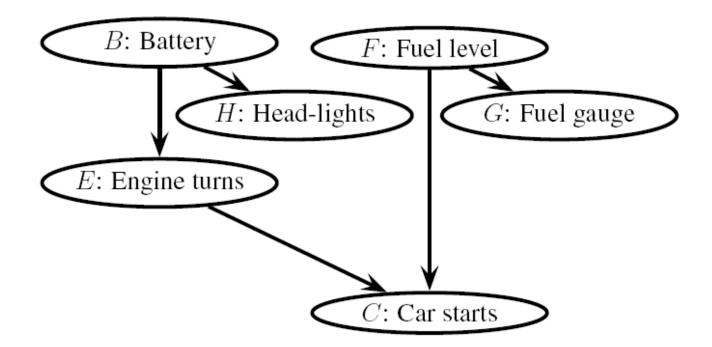
- Bayesian (or Belief) Networks (BN) are a widely used formalism from AI (Artificial Intelligence) for representing uncertain knowledge in probabilistic systems, applied to a variety of real-world problems [J. Pearl, Probabilistic Reasoning in Inteligence Systems, Morgan Kaufmann, 1988]
- BN are defined by a directed acyclic graph in which (discrete) random variables are assigned to each node, together with the quantitative conditional dependence on the parent nodes (Conditional Probability Table or CPT)

BN: definition

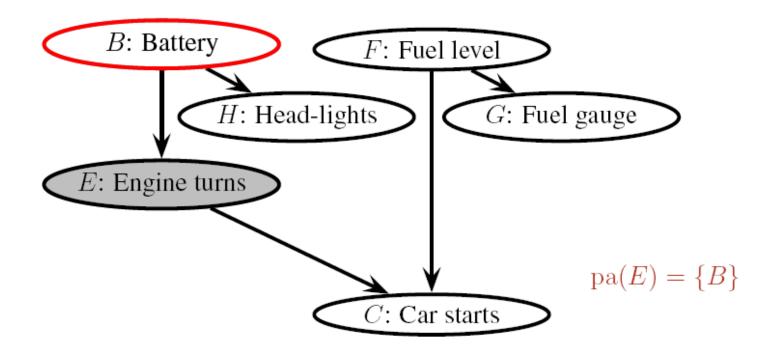
- A Bayesian Network is a pair $\langle G, P \rangle$ where
 - \Box G is a Directed Acyclic Graph (DAG) with
 - nodes representing (discrete) random variables
 - an oriented arc $X \rightarrow Y$ represents a dependency relation of Y from X (X influences Y, Y depends on X, X causes Y, etc...)
 - *P* is a probability distribution over the random variables represented by the nodes $X_1, ..., X_n$ of the DAG such that

Specification of a CPT local to each node

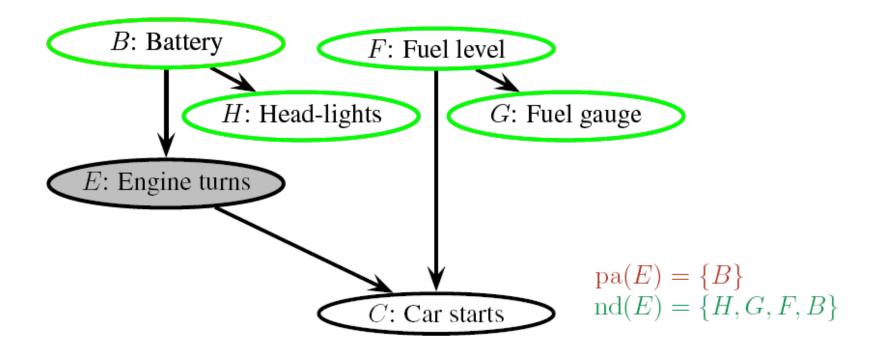
Example: car start (H. Langseth)



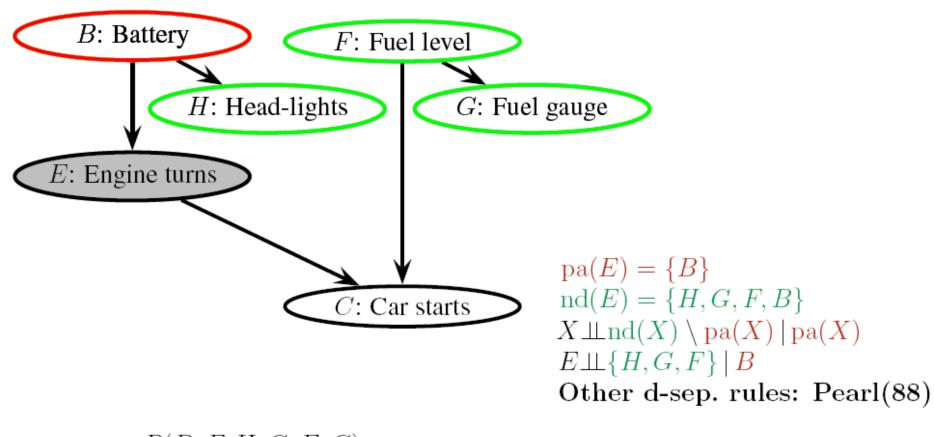
$$P(B, F, H, G, E, C)$$



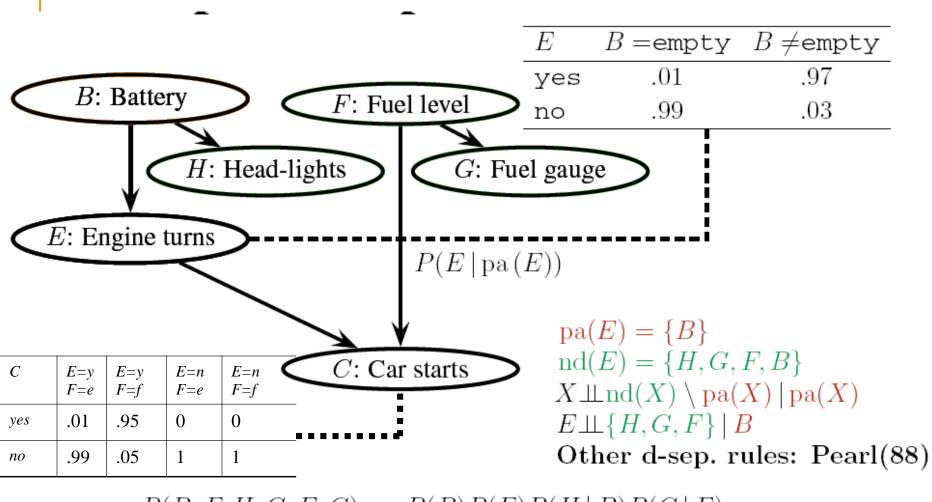
P(B, F, H, G, E, C)



P(B, F, H, G, E, C)

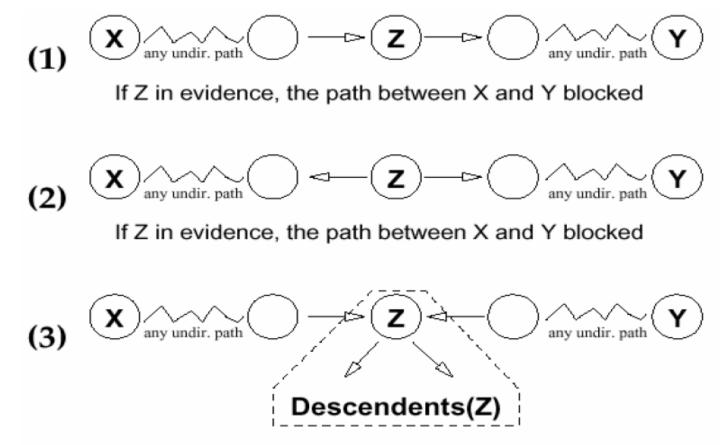


P(B, F, H, G, E, C)



$$\begin{split} P(B,F,H,G,E,C) &= P(B)P(F)P(H \mid B)P(G \mid F) \\ & \cdot \quad P(E \mid B)P(C \mid E,F) \end{split}$$

Blocking: Graphical View

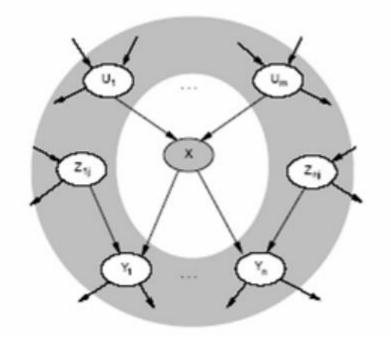


If Z is *not* in evidence and *no* descendent of Z is in evidence, then the path between X and Y is blocked

More on independence: Markov Blanket

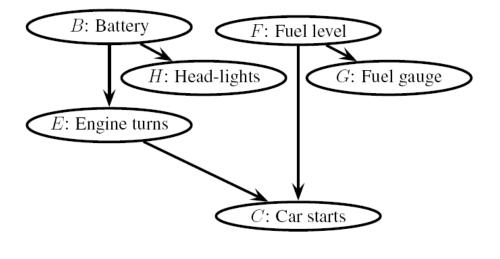
MB(X)= parents(X) U children(X) U mates(X)

X is independent of any other nodes of the network given MB(X)

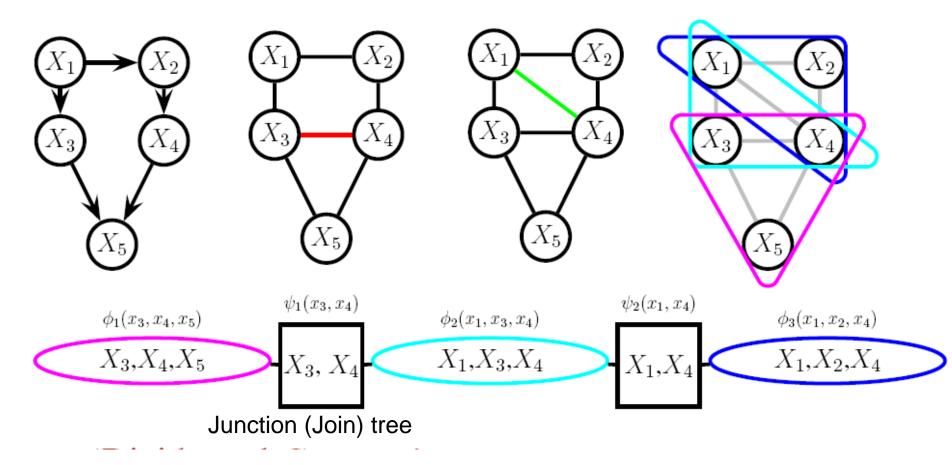


Inference: probabilistic computations

- Diagnostic inference
 - Pr(cause | effect)
 - $\blacksquare Pr(B \mid C)$
 - Pr(F| G)
- Predictive inference
 - Pr(effect | cause)
 - $\blacksquare Pr(C \mid B)$
 - $\blacksquare Pr(C \mid F)$
- Combined Inference
 - Pr(intermediate|cause, effect)
 - $\blacksquare Pr(E \mid B, C)$
- Exact algorithms (*Clustering*, *Conditioning*, *Variable Elimination*) or approximated algorithms (*Stochastic Simulation*) for BN inference



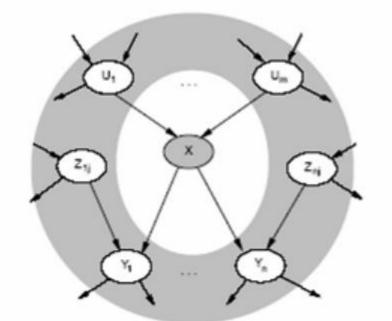
Clustering Computation Scheme



Advantage: dealing with 3 variables instead of 5

Approximate Inference: MCMC (Gibbs sampling)

Each node X is independent from the rest of this network given the $MB(X) \rightarrow$ sample a value of X from the net distribution, given a specific instance of MB(X)



Probability given the Markov blanket is calculated as follows: $P(x'_i|mb(X_i)) = P(x'_i|parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$

2012 RAMS – Tutorial 9A – Portinale

Gibbs sampling

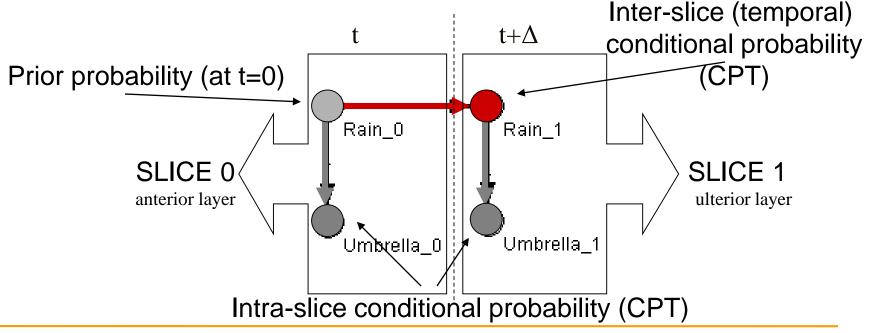
- 1. set X_1, X_2, \dots, X_n as a random instance
- 2. for j=1 to MaxRun do
 - for i=1 to n do
 - $if X_i$ in evidence then X_i =observation

else sample X_i from $P(X_i/MB(X_i))$

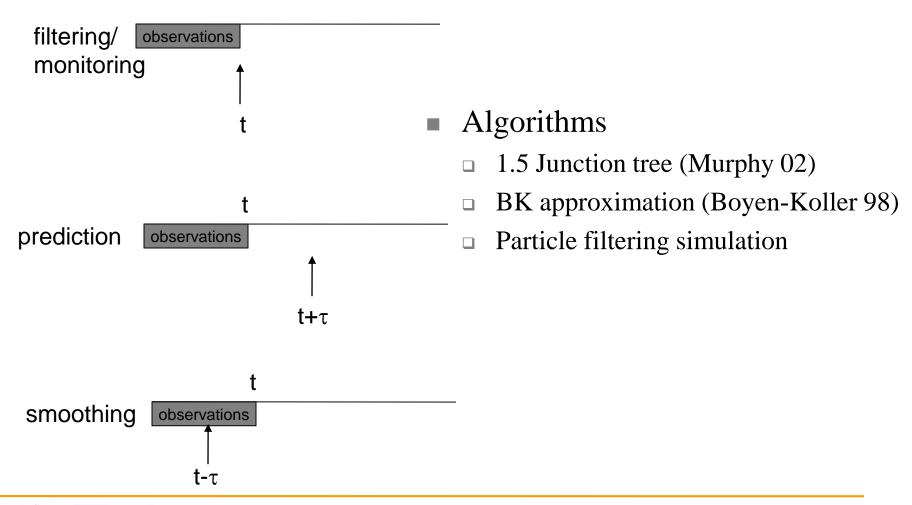
3. Estimate Co-

Dynamic Bayesian Networks

- DBN introduce a **discrete** temporal dimension:
 - □ The system is represented at several time slices
 - Conditional dependencies among variables at different slices, are introduced to capture the temporal evolution.
 - □ Time invariance is assumed: typically 2 time slices (t, t+ Δ) are assumed in DBN: Markovian assumption (2TBN)



Inference in DBN



Overview

- Dependability/Reliability issues
- Main Model Types for Reliability
- Probabilistic Graphical Models (BN and DBN)
 - Modeling
 - Computing
- From Fault Trees to Bayesian Nets
 - Modeling
 - Computing
- Case Studies
- Tools
- Open Issues

BN vs FTA

BNs may improve both the modeling and the analysis power wrt FT:

Modeling Issues:

Local conditional dependencies, probabilistic gates, multi-state variables, dependent failures, uncertainty in model parameters.

Analysis Issues:

A forward (or predictive) analysis
 A backward (diagnostic) analysis, the posterior probability of any set of variables is computed.

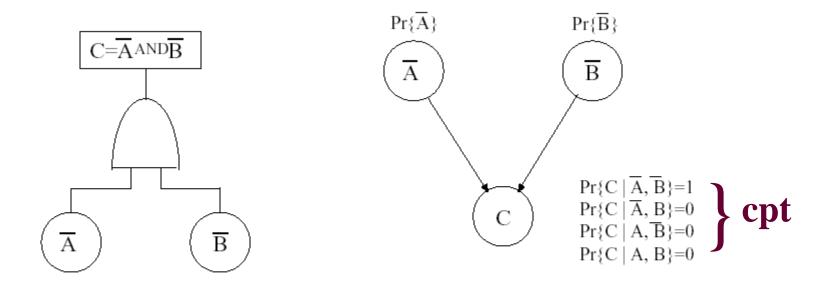
OR gate vs BN node



FAULT - TREE: OR Gate

BAYESIAN NETWORK: OR Node

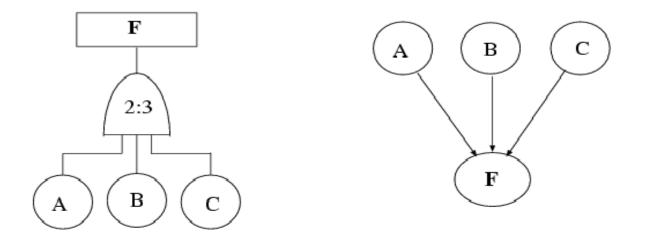
AND gate vs BN node

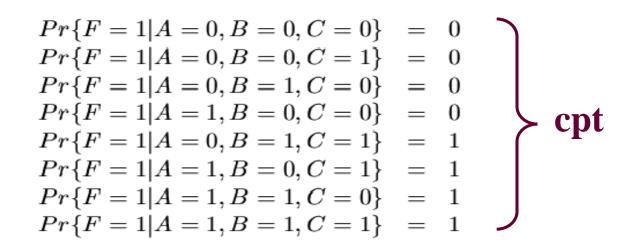


FAULT - TREE: AND Gate

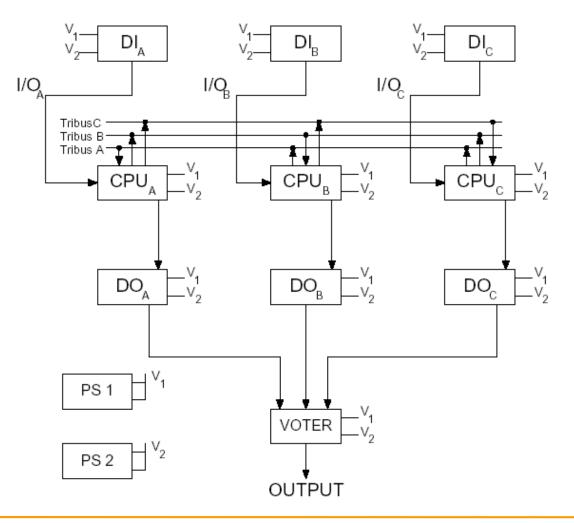
BAYESIAN NETWORK: AND Node

k:n gate vs BN node

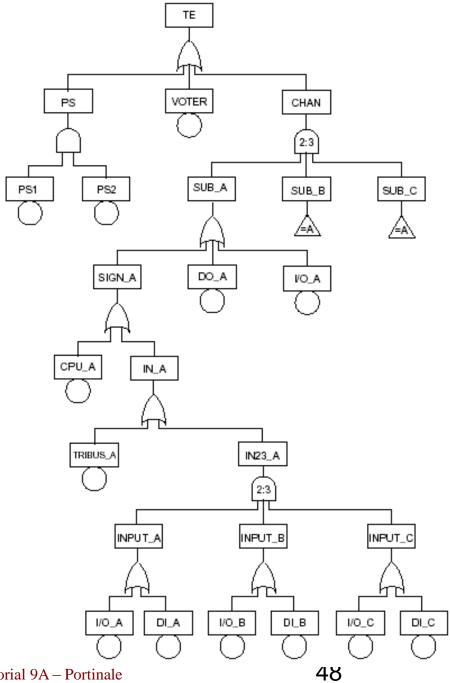




Example: a PLC architecture

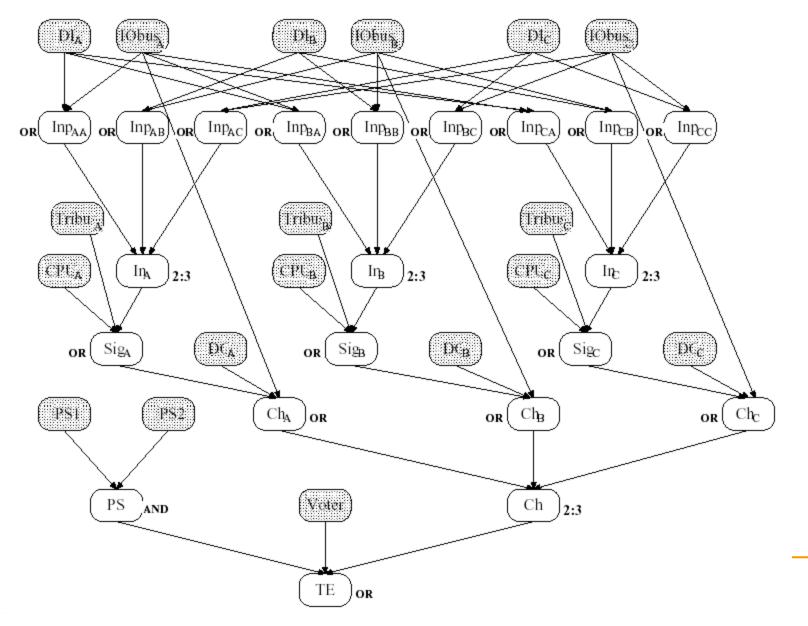


PLC: the FT



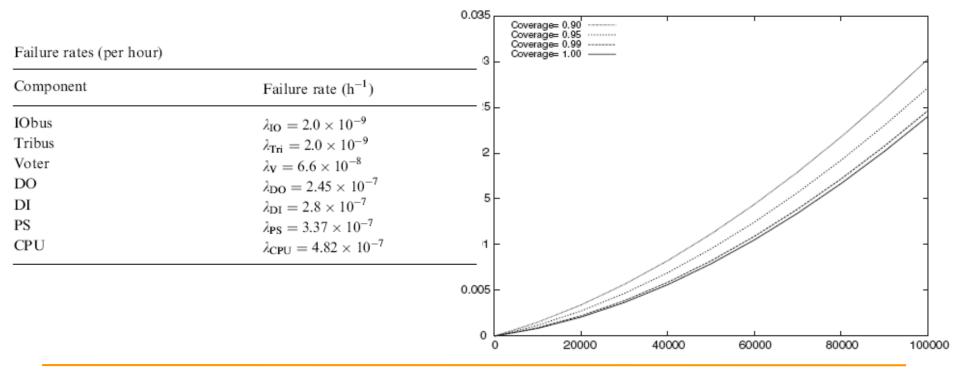
2012 RAMS - Tutorial 9A - Portinale

PLC: the BN



Analysis Tasks

Probability of TE at time t (system's unreliability)
 Query: *P(TE)* using the probability of basic events (i.e. BN roots) computed at time t (e.g. *P(C=true)=1-e^{-λt}*)



Analysis Tasks

- Posterior probability of each component *C* given the system failure (Fussell-Vesely importance) at time *t*
 - Query: P(C | TE) by using priors on roots at time t

 $t = 4 \times 10^5 \,\mathrm{h}$

Component	Posterior failure prob.		
CPU	0.383		
DO	0.204		
PS	0.176		
DI	0.172		
Voter	0.118		
IObus	0.002		
Tribus	0.002		

Vesely/Fussell's importance measure

Analysis Tasks

 Posterior probability of a set of components given the system failure at time t

• Query $P(C_1, \dots, C_n | TE)$ at time t

Most probable posterior configurations

Components	Posterior probability
$\{CPU_A, CPU_B\}$	0.045
$\{CPU_B, CPU_C\}$	0.045
$\{CPU_A, CPU_C\}$	0.045
{Voter}	0.027
$\{CPU_A, DO_C\}$	0.022
$\{CPU_A, DO_B\}$	0.022
$\{CPU_B, DO_A\}$	0.022
$\{CPU_B, DO_C\}$	0.022
$\{CPU_C, DO_A\}$	0.022
$\{\mathrm{CPU}_C, \mathrm{DO}_B\}$	0.022
$\{PS_1, PS_2\}$	0.021

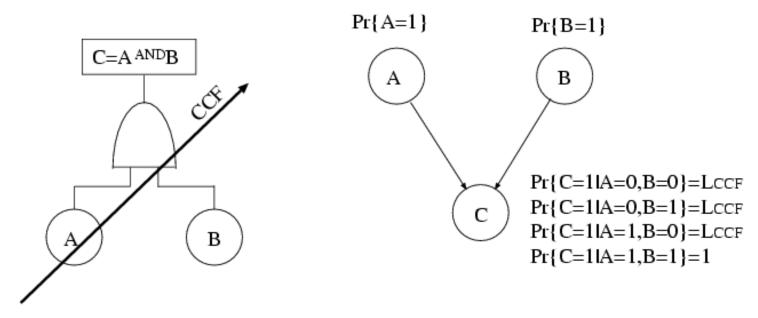
 $t = 4 \times 10^{5} \, \text{h}$

Advanced Modeling Features

BN can also improve the modeling power wrt FT

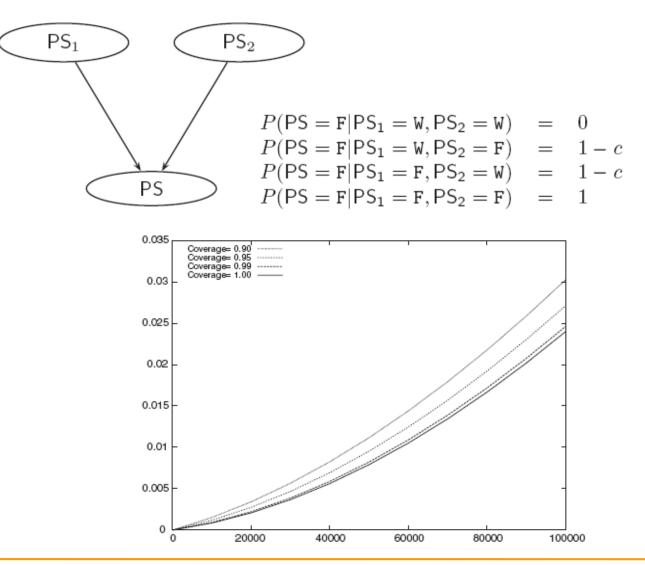
- Probabilistic Gates
- Multi-state Variables
- Sequentially Dependent Faults
- Parameter Uncertainty

Probabilistic Gates: Common Cause Failure

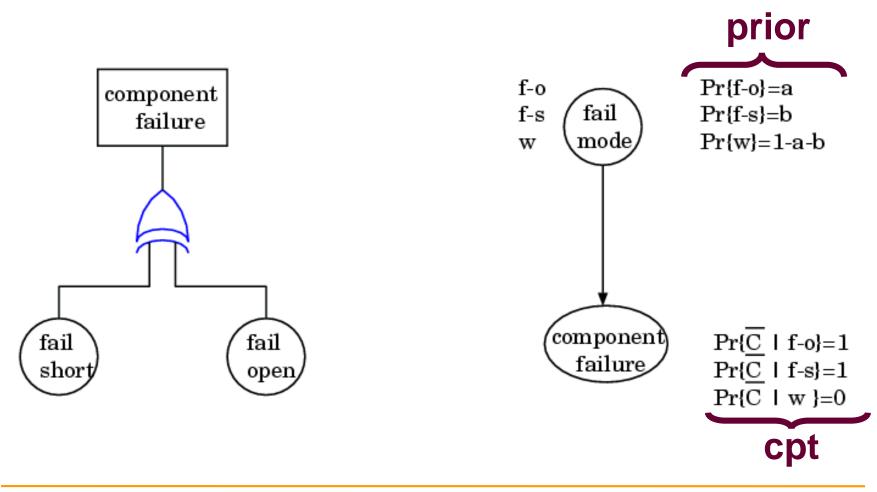


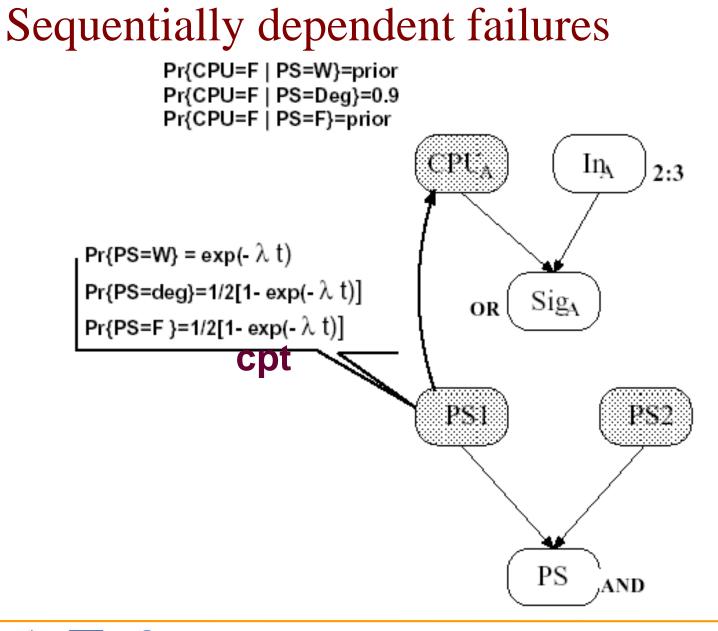
FAULT - TREE: AND Gate With Common Cause Failures BAYESIAN NETWORK: AND Node With Common Cause Failures

Probabilistic Gates: Coverage

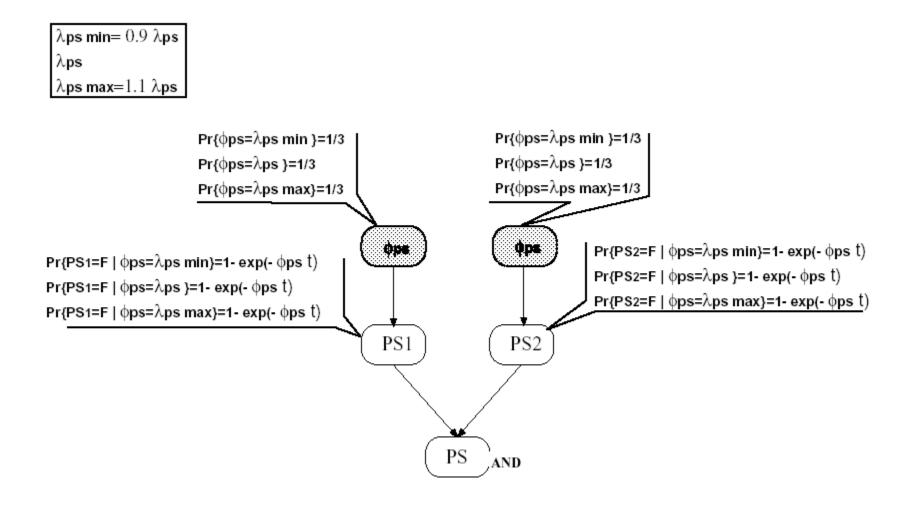


Multi-State Variables

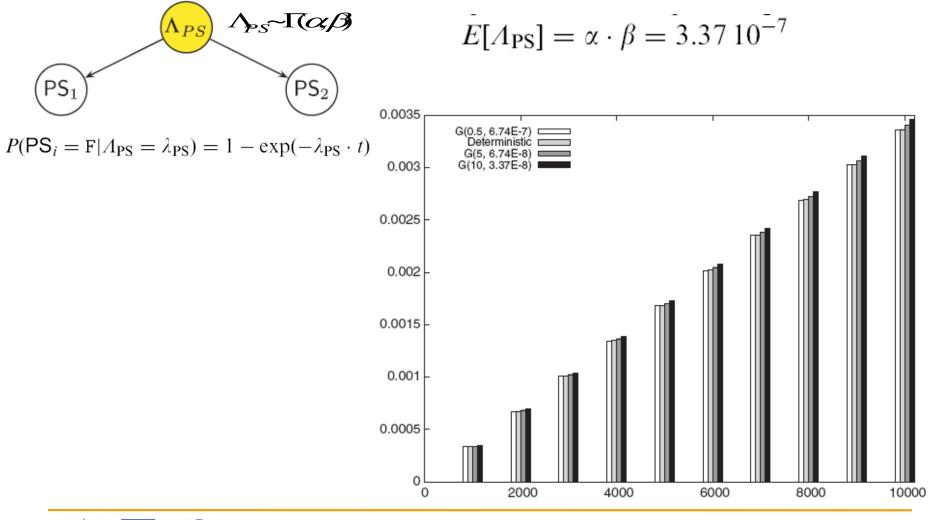




Parameter Uncertainty



Parameter Ucertainty: example



Overview

- Dependability/Reliability issues
- Main Model Types for Reliability
- Probabilistic Graphical Models (BN and DBN)
 - Modeling
 - Computing
- From Dynamic Fault Trees to Dynamic Bayesian Nets
 - Modeling
 - Computing
- Case Studies
- Tools
- Open Issues

DFT analysis

- DFT relaxes assumptions holding for FT
- DFT analysis must capture the system evolution during the time.
 Solutions:
 - □ DFT → BDD + CTMC (modular approach)
 - Dynamic module → Continuous Time Markov Chains (CTMC)
 □ Univ. of Virginia
 - Dynamic module → (Colored) Stochastic Petri Nets → CTMC
 Univ. del Piemonte Orientale
 - □ DFT → algebraic formula including \triangleleft operator

□ ENS Cachan

□ DFT \rightarrow I/O Interactive Markov Chains

□ Univ. of Twente

□ DFT → Dynamic Bayesian Networks (DBN)

DBN for DFT analysis

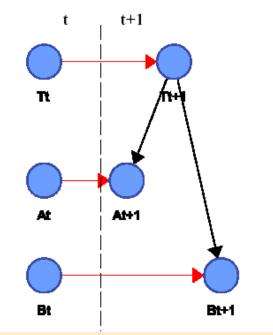
- DBN remove the assumption on binary events
 - Multistate components
- DBN remove the assumption on statistical independence
 - Event dependency
- DBN remove the assumption on Boolean gates (AND, OR)
 - Noisy OR, noisy AND
 - Dynamic gates
- DBN provide a more flexible forward and backward analysis, possibly based on observations
 - □ Forward (predictive) analysis: Pr(TE), Pr(Sub), Pr(TE|A), Pr(Sub|A)
 - □ Backward (diagnostic) analysis: Pr(A|TE), Pr(Sub|TE), ...
- DBN avoid the state space generation
 - □ The model does not enumerate all the system states and transitions

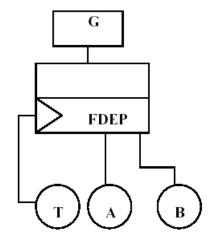
DFT conversion into DBN

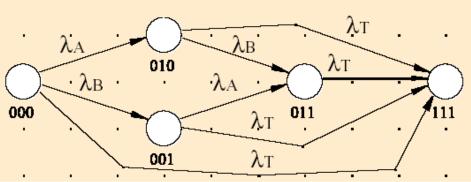
Modular approach:

- □ First, every single gate is converted into DBN
- □ Then, the resulting DBNs are connected together in correspondance to the nodes they share.
 - Connection of DBN1 with DBN2
 - An adjustment to the CPT of a node is required when new arcs enter the node:
 - add all the parents derived from DBN1 and DBN2 as columns in the new CPT;
 - □ in every entry of the table, set the probability of failure of the node using some in teraction rules (Noisy-Or, MSP,...)
- The connection of all the DBNs corresponding to the single gates, provides the DBN expressing the DFT model.

Functional Dependency Gate

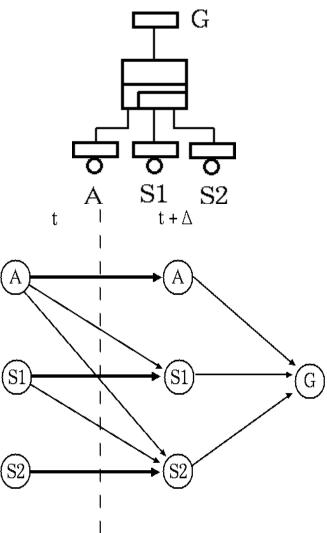






 $Pr{T(t+\Delta)=1/T(t)=1}=1$ $Pr{T(t+\Delta)=1/T(t)=0}=1-e^{-\lambda}T^{\Delta t}$ $Pr{A(t+\Delta)=1/A(t)=1}=1$ $Pr{A(t+\Delta)=1|A(t)=0,T(t+\Delta)=0}=1-e^{-\lambda}T^{\Delta t}$ $Pr{A(t+\Delta)=1|A(t)=0,T(t+\Delta)=1}=1$

Warm Spare Gate



- A is the main component
 - failure rate: λ
- S1, S2 are the warm spare components
 - stand by $\rightarrow \alpha \lambda$ α is the dormancy factor (0< α <1)
 - working $\rightarrow \lambda$

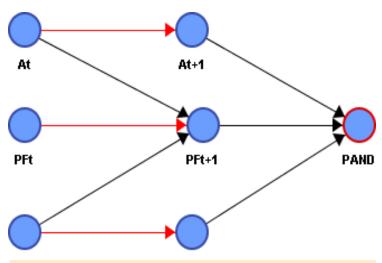
$$Pr\{A(t + \Delta) = 1 | A(t) = 1\} = 1$$

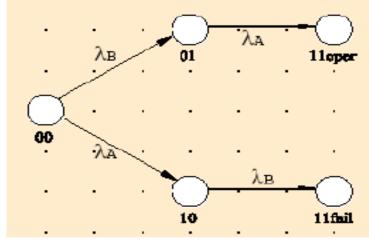
$$Pr\{A(t + \Delta) = 1 | A(t) = 0\} = 1 - e^{-\lambda_A \Delta}$$

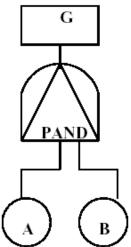
$$\begin{aligned} &\Pr\{S1(t + \Delta) = 1 | S1(t) = 1\} = 1 \\ &\Pr\{S1(t + \Delta) = 1 | A(t) = 0, S1(t) = 0\} = 1 - e^{-\alpha\lambda_{S_1}\Delta} \\ &\Pr\{S1(t + \Delta) = 1 | A(t) = 1, S1(t) = 0\} = 1 - e^{-\lambda_{S_1}\Delta} \end{aligned}$$

$$\begin{split} ⪻\{S2(t+\Delta)=1|S2(t)=1\}=1\\ ⪻\{S2(t+\Delta)=1|A(t)=0,S1(t)=0,S2(t)=0\}=1-e^{-\alpha\lambda_{S_2}\Delta}\\ ⪻\{S2(t+\Delta)=1|A(t)=0,S1(t)=1,S2(t)=0\}=1-e^{-\alpha\lambda_{S_2}\Delta}\\ ⪻\{S2(t+\Delta)=1|A(t)=1,S1(t)=0,S2(t)=0\}=1-e^{-\alpha\lambda_{S_2}\Delta}\\ ⪻\{S2(t+\Delta)=1|A(t)=1,S1(t)=1,S2(t)=0\}=1-e^{-\lambda_{S_2}\Delta}\\ \end{split}$$

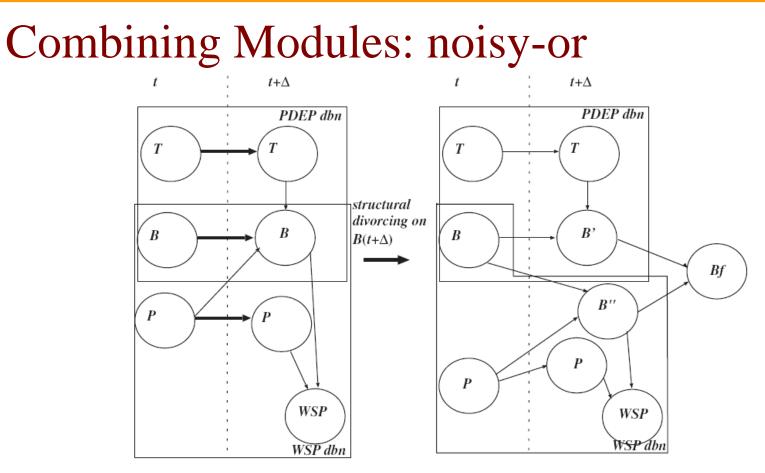
Priority AND Gate







 $\begin{aligned} & Pr\{A(t+\Delta)=1/A(t)=1\}=1 \\ & Pr\{A(t+\Delta)=1/A(t)=0\}=1-e^{-\lambda} \Delta t \\ & Pr\{B(t+\Delta)=1/B(t)=1\}=1 \\ & Pr\{B(t+\Delta)=1/B(t)=0\}=1-e^{-\lambda} \Delta t \\ & Pr\{PF(t+\Delta)=1/B(t)=0\}=1-e^{-\lambda} \Delta t \\ & Pr\{PF(t+\Delta)=1/B(t)=0\}=1-e^{-\lambda} \Delta t \\ & Pr\{PF(t+\Delta)=1/B(t)=0\}=0 \\ & Pr\{PF(t+\Delta)=1/A(t)=0, B(t)=0, PF(t)=0\}=0 \\ & Pr\{PF(t+\Delta)=1| A(t)=1, B(t)=0, PF(t)=0\}=0 \\ & Pr\{PF(t+\Delta)=1| A(t)=1, B(t)=1, PF(t)=0\}=1 \end{aligned}$





$$P[B(t + \Delta) = 1 | B(t) = 0, T(t + \Delta) = 1, P(t) = 1]$$

= $P[B_{\rm f}(t + \Delta) = 1 | B'(t + \Delta) = "01", B''(t + \Delta) = "01")]$
= $1 - ((1 - p_{\rm d})(1 - \lambda)) = 1 - 0.20.9 = 0.82.$ (1)

Combining Modules: MSP

Probability of failure of $B(t + \Delta)$ in the PDEP DBN

B(t)	$T(t + \Delta)$	Failure	of $B(t + \Delta)$		
0	0	0.05			
0	1	0.8			
1	0	1			
1 1	1				
		Probability of f	failure of $B(t + \Delta)$ in the WSP DBN		
			B(t)	P(t)	Failure of $B(t + \Delta)$
			0	0	0.05
			0	1	0.1
			1	0	1
			1	1	1

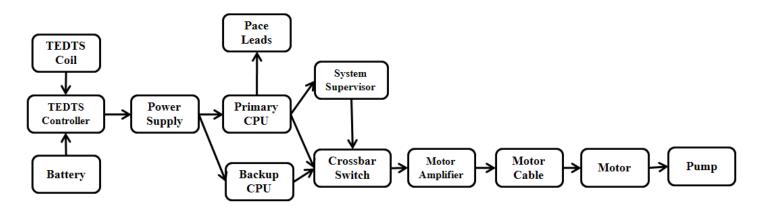
Probability of failure of $B(t + \Delta)$ in the combined network

B(t)	$T(t + \Delta)$	P(t)	Failure of $B(t + \Delta)$
0	0	0	$0.05 = \max(0.05, 0.05)$
0	0	1	$0.1 = \max(0.05, 0.1)$
0	1	0	$0.8 = \max(0.8, 0.05)$
0	1	1	$0.8 = \max(0.8, 0.1)$
1	0	0	$\max(1,1)$
1	0	1	$\max(1, 1)$
1	1	0	$\max(1, 1)$
1	1	1	$\max(1, 1)$

Overview

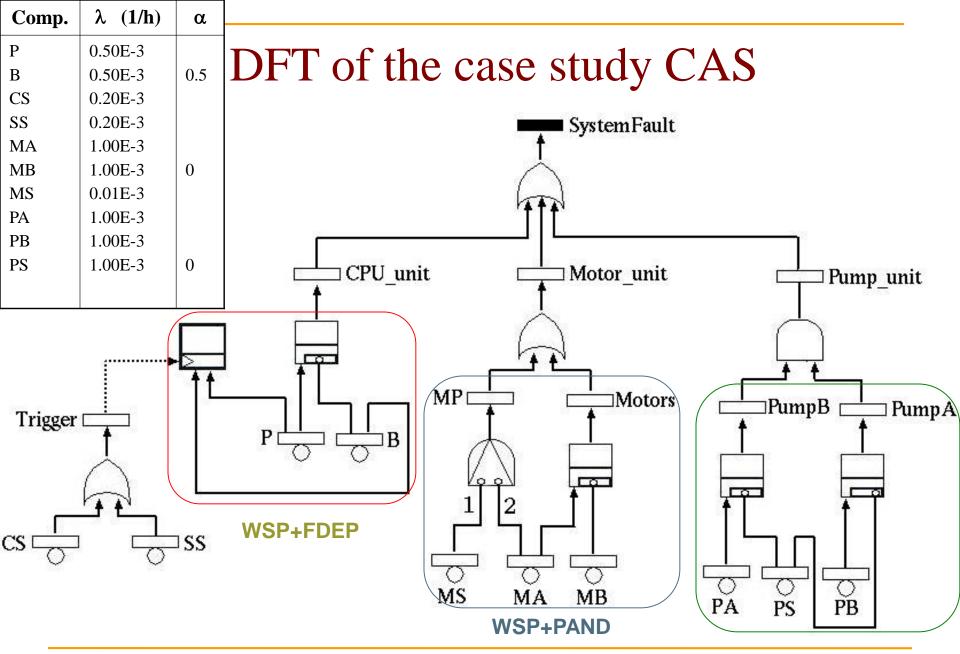
- Dependability/Reliability issues
- Main Model Types for Reliability
- Probabilistic Graphical Models (BN and DBN)
 - Modeling
 - Computing
- From (Dynamic) Fault Trees to (Dynamic) Bayesian Nets
 - Modeling
 - Computing
- Case Studies
- Tools
- Open Issues

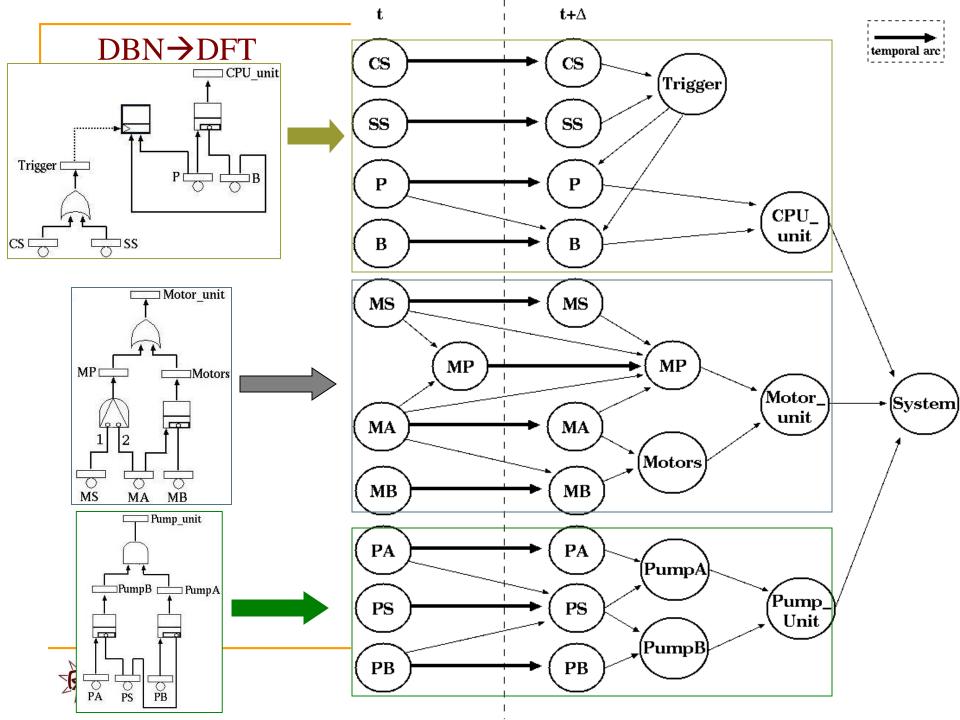
Cardiac Assist System (Dugan et al)



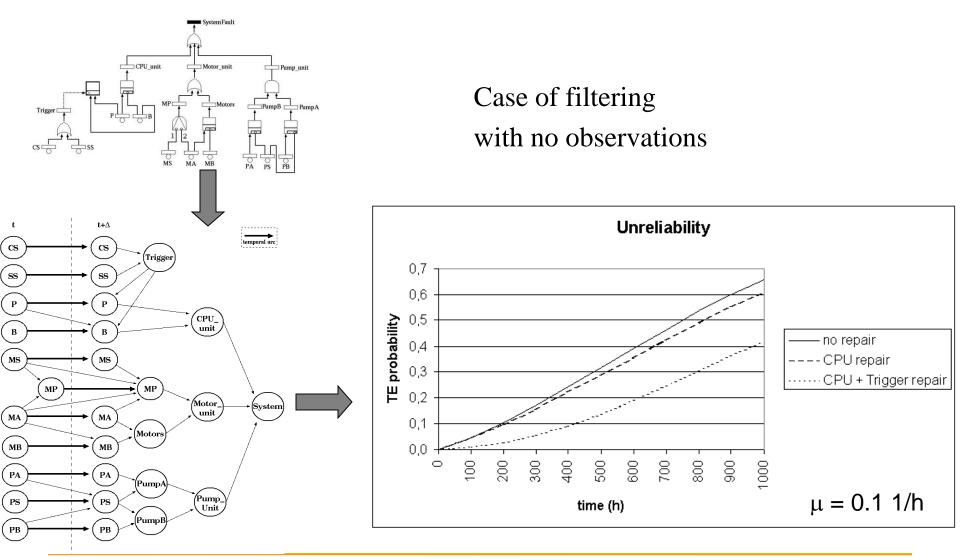
• The failure of either one of the modules causes the whole system failure:

- The CPU module consists of the primary cpu P and a warm spare B:
 - Both P and B are functionally dependent on a cross switch CS and a system supervision SS
 - Both P and B are considered as repairable
- The Motor module consists of the primary motor MA and a cold spare MB:
 - MB turns into operation when the MA fails, because of a motor switching component MS
 - □ if MS fails before MA, then the spare cannot become operational
- The Pump module is composed by two primary pumps PA and PB running in parallel and a cold spare PS





Inference results

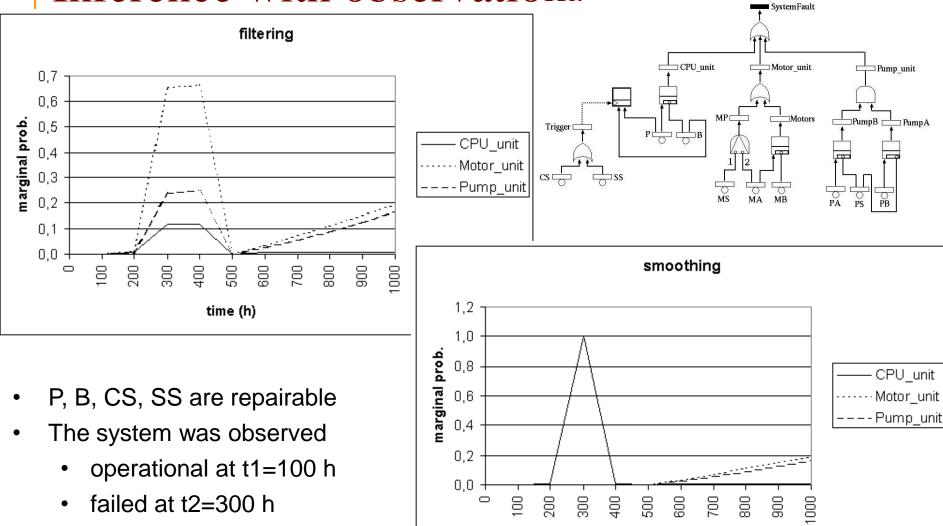


Results comparison

Time (h)	RADYBAN(k = 1)	RADYBAN $(k = 0, 1)$	Galileo
100	0.045978	0.046026	0.0460314
200	0.103124	0.103214	0.103222
300	0.169204	0.169327	0.169336
400	0.241328	0.241474	0.241483
500	0.316482	0.316645	0.316651
600	0.391893	0.392060	0.392066
700	0.465241	0.465408	0.465411
800	0.534745	0.534908	0.534908
900	0.599169	0.599322	0.59932
1000	0.657763	0.657908	0.6579

Time (h)	RADYBAN		DRPFTproc				
	CPU repair	CPU + Trigger repair	CPU repair	CPU + Trigger repair			
100	0.044283796102	0.011243030429	0.0443301588	0.0112820476			
200	0.096916869283	0.027566317469	0.0951982881	0.0276517226			
300	0.156659856439	0.054836865515	0.155093539	0.0549629270			
400	0.221550568938	0.091957211494	0.220137459	0.0921166438			
500	0.289382189512	0.137252241373	0.288119742	0.137437204			
600	0.358023554087	0.188778832555	0.356905021	0.188981668			
700	0.425606846809	0.244557544589	0.424624354	0.244770740			
800	0.490624904633	0.302729338408	0.489768367	0.302945892			
900	0.551952958107	0.361649900675	0.551211316	0.361864672			
1000	0.608829379082	0.419938921928	0.608191065	0.420148205			

Inference with observations



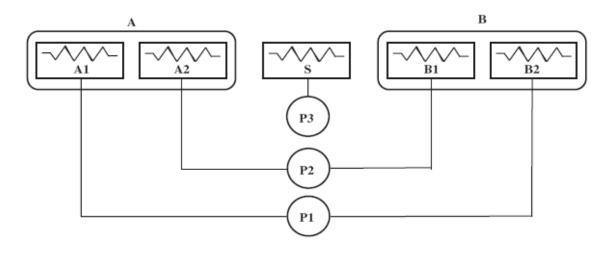
• operational t3=500 h

time (t)

Joint probabilities assuming observations

Time (h)	0,0,0	0,0,1	0, 1, 0	0, 1, 1
100	1.000000	0.00000	0.000000	0.000000
200	0.977576	0.003501	0.012862	0.000046
300	0.000000	0.228510	0.643095	0.007708
400	0.110162	0.224175	0.637081	0.022560
500	1.000000	0.00000	0.000000	0.00000
600	0.934621	0.024475	0.033999	0.000890
700	0.870357	0.051434	0.068166	0.004028
800	0.803337	0.079515	0.101124	0.010009
900	0.735453	0.107478	0.131794	0.019260
1000	0.668297	0.134277	0.159387	0.032024
	1,0,0	1,0,1	1, 1, 0	1, 1, 1
100	0.000000	0.000000	0.000000	0.000000
200	0.005916	0.000021	0.000078	0.000000
300	0.115366	0.001383	0.003891	0.000047
400	0.000673	0.001357	0.003855	0.000137
500	0.000000	0.000000	0.000000	0.000000
600	0.005655	0.000148	0.000206	0.00006
700	0.005267	0.000311	0.000413	0.000024
800	0.004861	0.000481	0.000612	0.000061
900	0.004450	0.000650	0.000798	0.000117
1000	0.004044	0.000813	0.000964	0.000194

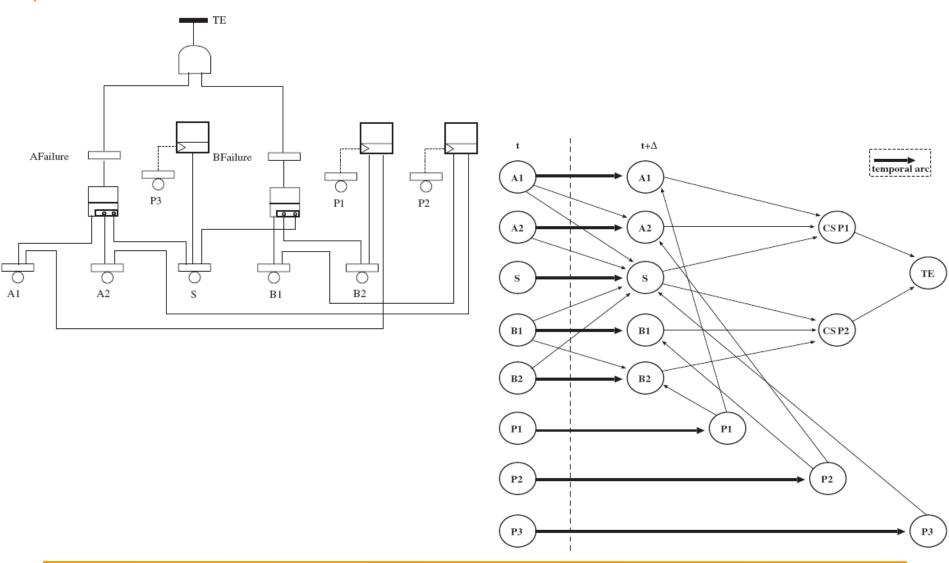
Active Heat Rejection System (Boudali-Dugan)



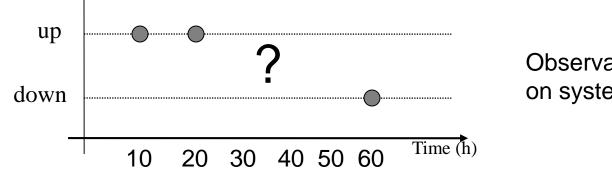
The failure rates in the AHRS example

Component	Failure rate (λ) (h ⁻¹			
A1	0.001			
A2	0.005			
B1	0.002			
B2	0.0035			
S	0.005			
P1, P2, P3	0.003			

AHRS: the DFT and the DBN



AHRS: smoothing results

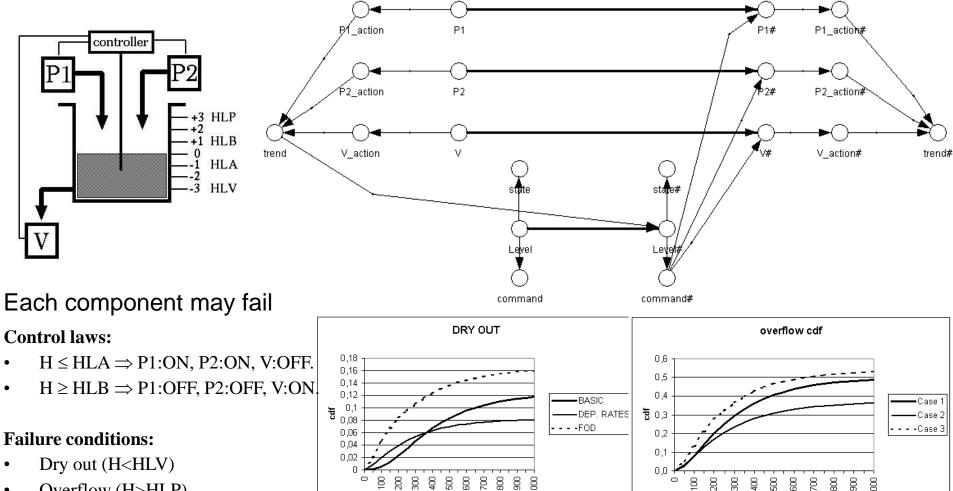


Observation stream on system status (TE)

Smoothing re	sults
--------------	-------

Time (h)	RADYBAN unreliability
10	0.000000
20	0.000000
30	0.000736
40	0.002118
50	0.004305
60	1.000000

DBN model and analysis of a benchmark



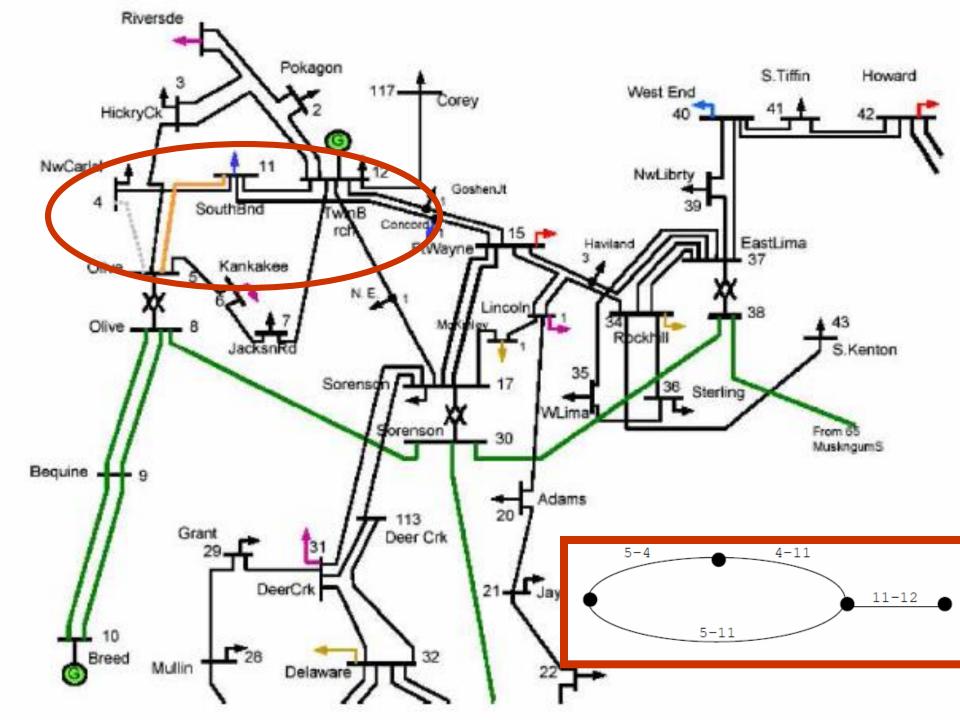
Overflow (H>HLP)

time

time (h)

Cascading failures

- Interdependencies among complex system(s) components increase the risk of failures
- Cascading failures:
 - Failure in one component causes an overload in adjacent components, increasing their failure probability
 - If not compensated, the cascading overload/failure can cause a progressive disruption of the system
 - E.g. recent occurrence of large scale electrical blackouts



Issues and assumptions

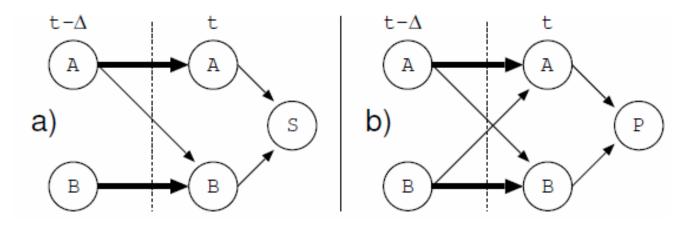
Line states

- Working, outaged, overloaded
 - 3-state variables
- Overload introduces temporal dependencies
- Outage probability
 - Negative exponential distribution
 - Working line: failure rate $\lambda = 0.0001h^{-1}$
 - Overloaded line: increased failure rate $\alpha\lambda$ (α =1.2), $\beta\lambda$ (β =1.5)

Methodology

- Automatic conversion of the series/parallel diagram into a DBN
- Modular composition of
 - Series modules
 - Parallel modules
 - Generalization of OR and AND nodes, working with multi-state variables

Basic modules



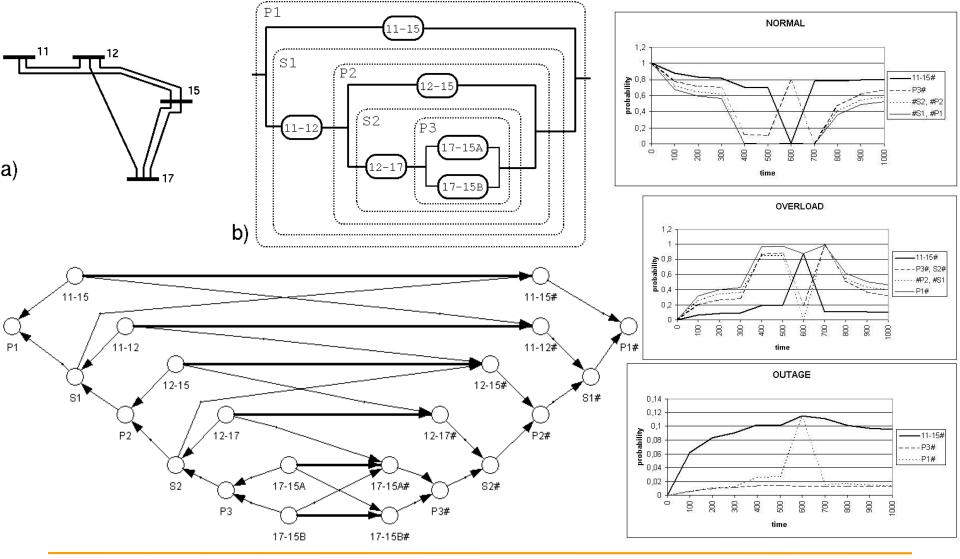
Series:

- □ if A is overloaded, S gets overloaded (B cannot be overloaded)
- □ If A or B fails, S fails

Parallel:

- □ if A or B is overloaded, P gets overloaded
- □ Is A and B fail, P fails
- □ if only A or only B fails, P works properly

DBN model of cascading effects in a power grid

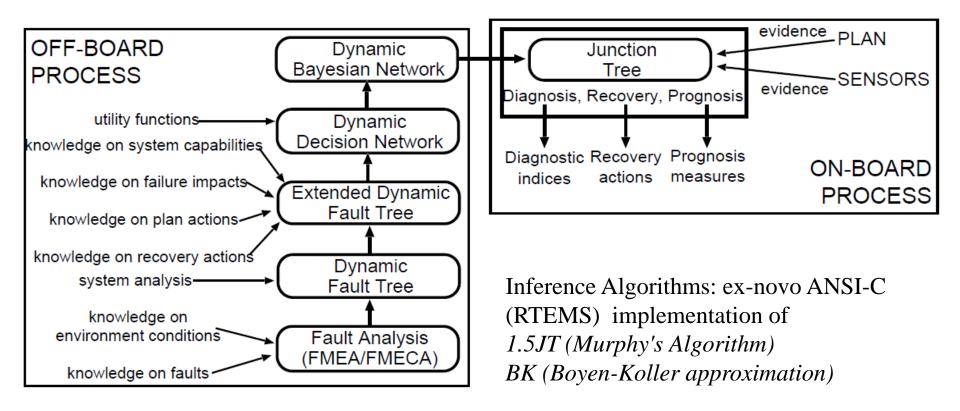


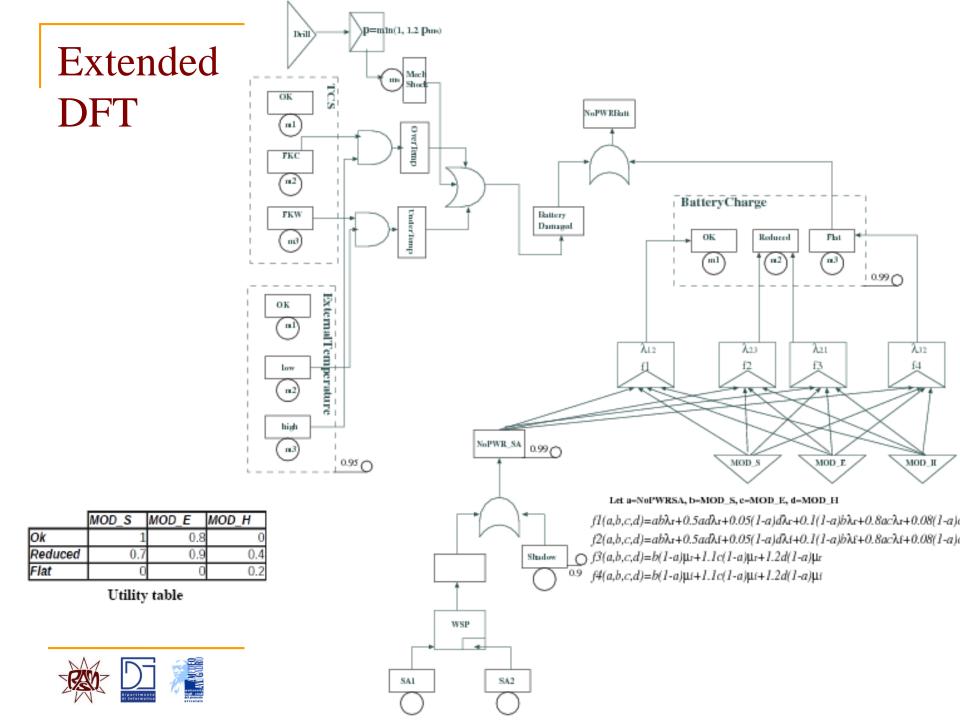
ARPHA: Anomaly Resolution for Prognostic Health management for Autonomy

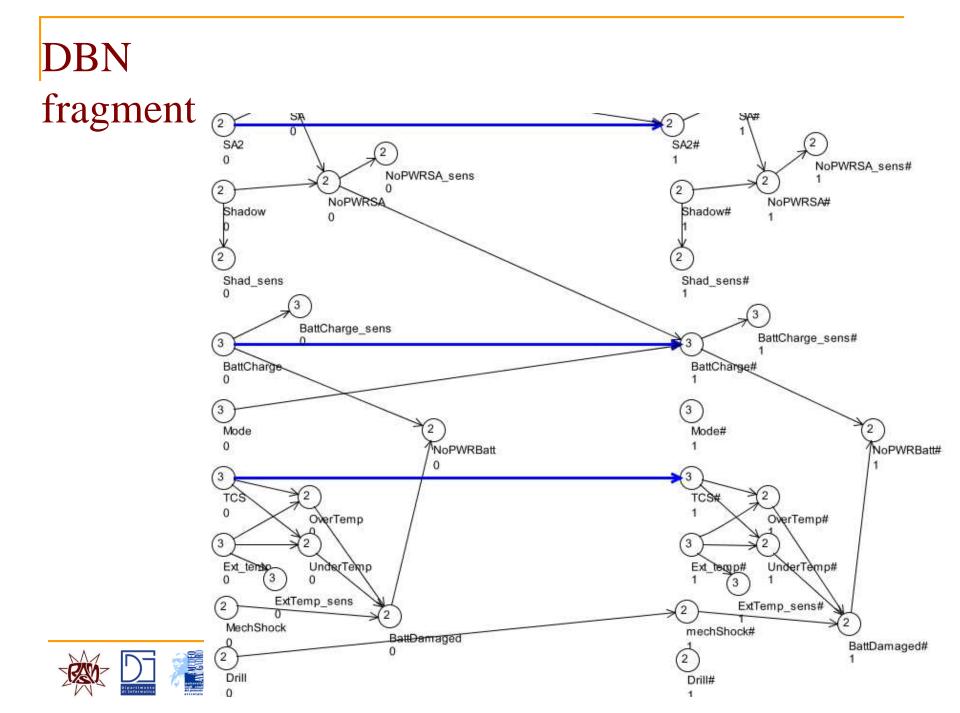
- Software architecture for FDIR analysis based on DBN inference
- Part of the VERIFIM study funded by ESA (partners U.P.O. and Thales/Alenia)
- Case study: Mars Rover power management subsystem reliability



ARPHA Block Scheme

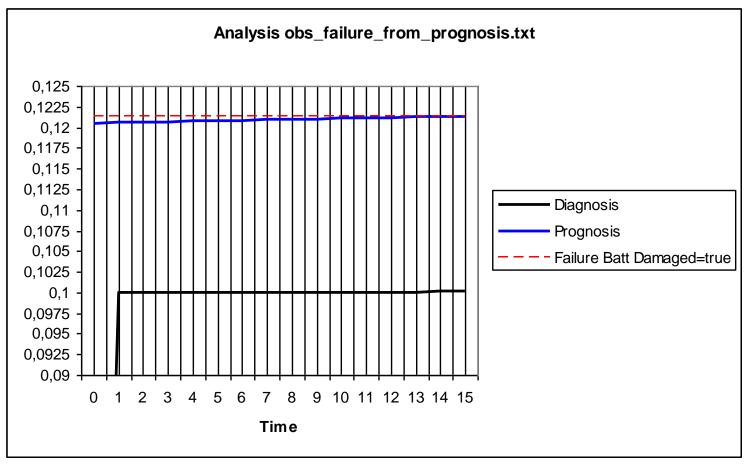






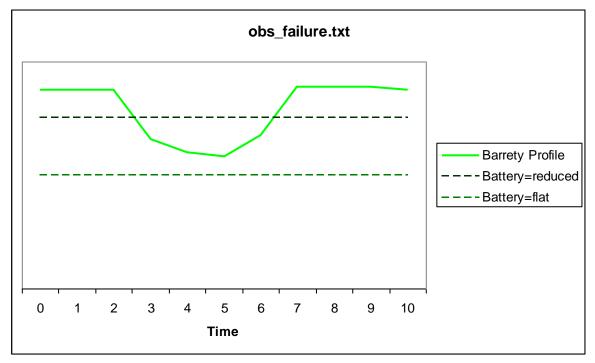
Diagnosis vs Prognosis

Sensor data with action (drill) at mission time 15 that will cause the damage of battery in the n_prog steps (180)



Diagnosis at time 15 says OK, but prognosis says "you'll got a problem in n steps"

Recovery as selection of best action



		MOD	MOD_E			MOD_H						
Time	Ok	Reduced	Flat	EU	Ok	Reduced	Flat	EU	Ok	Reduced	Flat	EU
1	0.99999	1.01514E-05	0	0.999997	0.999992	8.13E-06	0	0.800001	0.999995	5.1E-06	0	2.04036E-06
2	0.999982	1.75508E-05	0	0.999995	0.999986	1.41E-05	0	0.800001	0.999991	8.8E-06	0	3.52028E-06
3	0.996437	0.003562253	3.46E-07	0.998931	0.996457	0.003542	2.77E-07	0.800354	0.996487	0.003513	1.73E-07	0.001405091
4	0.585478	0.414480103	4.16E-05	0.875614	0.58549	0.414476	3.33E-05	0.841421	0.585508	0.414471	2.09E-05	0.165792433
5	0.007094	0.992806276	9.97E-05	0.702058	0.007095	0.992825	7.99E-05	0.899219	0.007097	0.992853	5.01E-05	0.397151336
6	0.010025	0.989964981	1.05E-05	0.703	0.011023	0.988968	8.48E-06	0.89889	0.012022	0.987972	5.45E-06	0.395190029
7	0.691285	0.308708903	5.8E-06	0.907382	0.691598	0.308397	5.16E-06	0.830836	0.691912	0.308084	4.22E-06	0.12323447

Overview

- Dependability/Reliability issues
- Main Model Types for Reliability
- Probabilistic Graphical Models (BN and DBN)
 - Modeling
 - Computing
- From (Dynamic) Fault Trees to (Dynamic) Bayesian Nets
 - Modeling
 - Computing
- Case Studies
- Tools
- Open Issues

RADYBAN: Reliability Analysis with DYnamic BAyesian Networks

- A tool aimed at exploiting DBN inference for reliability purposes
- Automatic compilation of a DFT into a DBN
- Graphical User Interface (both for DFT and DBN)
- Filtering and Smoothing inference (1.5JT and BK algorithms)
- Developed at the Computer Science Dept. of U.P.O.

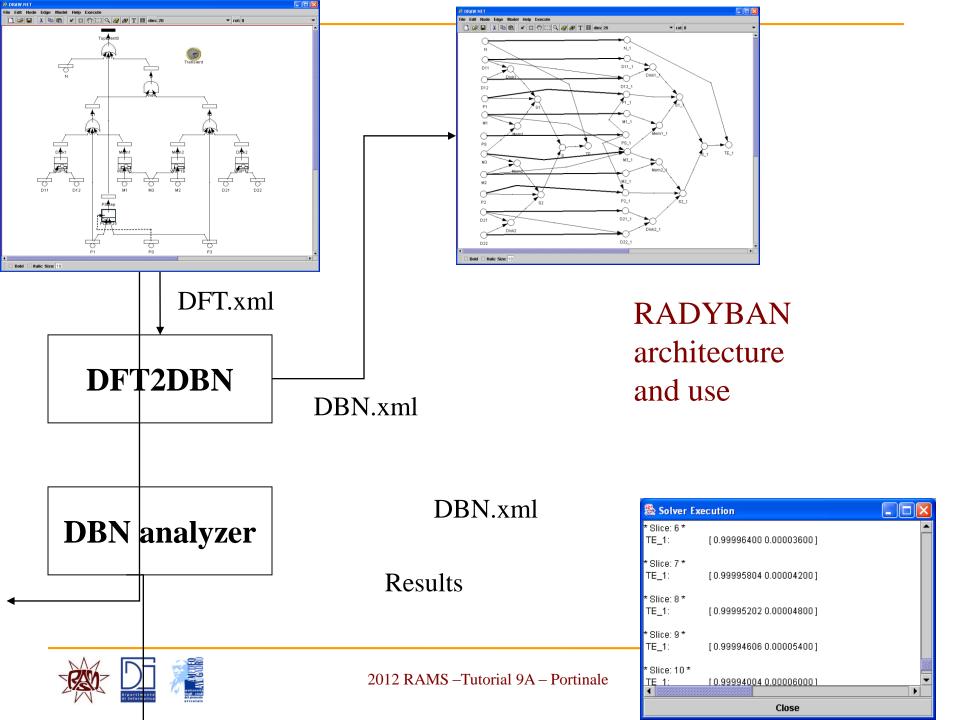
Available online at www.sciencedirect.com

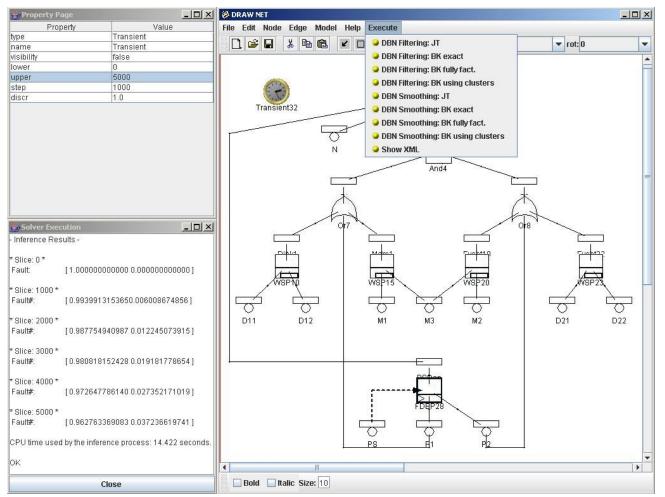
Reliability Engineering and System Safety 93 (2008) 922-932

www.elsevier.com/locate/ress

RADYBAN: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks

S. Montani, L. Portinale*, A. Bobbio, D. Codetta-Raiteri





Draw-Net GUI http://www.draw-net.com

INTEL PNL C++ libraries for DBN inference http://sourceforge.net/projects/openpnl/

BN software tools

Overview

- Dependability/Reliability issues
- Main Model Types for Reliability
- Probabilistic Graphical Models (BN and DBN)
 - Modeling
 - Computing
- From (Dynamic) Fault Trees to (Dynamic) Bayesian Nets
 - Modeling
 - Computing
- Case Studies
- Tools
- Open Issues

Open Issues

- Dealing with continuous variables
 - Gaussian Bayesian Networks
 - Hybrid Bayesian Networks

Dealing with Continous Time CTBN or GCTBN

Making the formalism more tailored to reliability practitioners and analysts (tools, tools and ... more tools)

Acknowledgments

- Colleagues
 - Prof. Andrea Bobbio
 - Prof. Daniele Codetta-Raiteri
 - Prof. Stefania Montani
- Past Students
 - **G**. Vercellese
 - □ M. Varesio
 - S. Di Nolfo
- External collaborators
 - □ Ing. M. Minichino (ENEA)
 - □ Ing. E. Ciancamerla (ENEA)
 - □ Ing. A. Guiotto (Thales/Alenia)

