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SUMMARY & PURPOSE
This tutorial will provide insights about the use of probabilistic graphical models based on the Bayesian

belief network formalism for reliability and dependability analysis. Bayesian networks (BNs) have become a
popular tool for modeling many kinds of statistical problems. Recently, we have also seen a growing interest
for using BNs in the reliability analysis community. In this tutorial, we will discuss the properties of the
modeling framework that make BNs particularly well suited for reliability applications. Modeling as well as
analysis issues are discussed, together with a selection of case studies that will be used to explain the
concepts that are introduced. We finally point to ongoing research that is relevant for practitioners in
reliability.
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1. INTRODUCTION

Over the last decade, Bayesian networks (BNs) have
become a popular tool for modeling many kinds of statistical
problems. In particular, we assisted to a growing interest for
using BNs in the reliability analysis community [14]. As the
quantities in reliability studies are uncertain, the end result
should be a mathematically sound statistical model describing
a set of random variables. Furthermore, such models require a
set of parameters to be fully specified, and either statistical
data or expert judgment must be used to estimate them. One
would like the formalism to minimize the number of
parameters required by the model. Finally, the model must be
represented such that the quantities we are interested in can
be calculated efficiently. All of these requirements have led to
reduced focus on traditional frameworks like fault trees (FTs),
and more flexible modeling frameworks have received
increased attention. One such framework which has gained
popularity is the set of Bayesian Network (BN) models,
originated in the field of artificial intelligence. Features
regarding both modeling and analysis of reliability block
diagrams and fault-trees have been compared to BNs, as well
as state-space models; results have shown that BNs have
significant advantages over the traditional frameworks. We
will discuss some of these advantages in detail by way of
specific case studies.

The tutorial is organized as follows: we will start by
recalling most relevant notions about dependability and
reliability that will be used throughout the tutorial, we then
move to presenting the basics of the BN framework, by
considering the BN modeling issues ad how they can be
addressed by exploiting classical reliability modeling methods
(for instance by showing how BN model can be automatically
obtained from FT-based models). We then switch to the BN
framework calculation algorithms, by showing how they can
be exploited for reliability analysis. We will outline how
dynamic system evolutions can be taken into account by
considering dynamic generalizations of the basic BN
formalism (Dynamic Bayesian Networks) and how they relate
to dynamic generalization of FT like Dynamic Fault Trees
(DFT). We will finally present a set of case studies ranging
from simple reliability applications to more sophisticated
approaches in the field of autonomous spacecraft FDIR.

1.1 Notation and Acronyms

FT fault tree
FTA fault tree analysis
TE top event of a FT
DFT dynamic fault tree
RBD reliability block diagram
CTMC continuous time Markov chain
DTMC discrete time Markov chain
PN Petri net
GSPN generalized stochastic Petri net
AI artificial intelligence
PGM probabilistic graphical model

BN Bayesian network
DBN dynamic Bayesian network
GCTBN generalized continuous time Bayesian

network
JT junction tree
CPT conditional probability table
DAG directed acyclic graph
FDIR fault detection, identification and recovery
EU expected utility

t, tj time
X(t) system status function
Pr[ ] probability function
Prt[ ] probability function at time t
E[ ] expected value
A(t) availability
A limiting availability
MTTF mean time to failure
MTTR mean time to repair

failure rate
repair rate

R(t) reliability function
U(t) unreliability function
X, Xi discrete random variable
pa(X) parent set of X
nd(X) non descendant of X

independence relation

2. DEPENDABILITY ISSUES

The term dependability is usually adopted to identify the
ability of a system to deliver a service that can justifiably be
trusted. It is currently considered as a composite concept with
different features  (see [15]). In particular, the following
attributes are defined for dependability and security:

Reliability: the continuity of correct  service
Availability: the readiness of correct service
Maintainability: the ability to undergo
modifications and repairs
Safety: the absence of catastrophic consequences

Reliability and availability are closely related attributes
that can be more formally defined as follows [25]; let the
system status function be

t
t

tX
atdownsystemif0

atupsystemif1
)(

then the availability function is defined as
)]([]1)(Pr[)( tXEtXtA

and the limiting availability is

MTTRMTTF
MTTFtAA

t
)(lim

While availability refers to a system potentially undergoing
maintanance and repair, the reliability R(t) is intended to
measure the probability that the system is able to perform the
required  function, in the interval (0,t), given the stress and
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environmental conditions. An example of a widely used
reliability function is the negative exponential distribution

tetR )(
where a constant failure rate  is  assumed  (so  that

MTTF=1/ ). One can also talk about the unreliability
function defined as U(t)=1-R(t), providing the probability that
the system is not performing the required function at time t
(i.e. that the system is failed at t).

It is worth noting that, in case the system is not repairable
(i.e. when there is no possibility of return to the correct
behavior when failed), then A(t)=R(t). On the contrary, the
availability will depend also on the repair capabilities; for
example if an exponential distribution with constant repair
rate  is assumed, then we can define

teXtX ]0)0(|0)(Pr[  (corresponding to
MTTR=1/ It should be clear that, if no repair is available
(e.g. ), then the limiting availability will be 0 (which is
exactly what happens to the limiting reliability).

Concerning the so-called threats of the dependability
taxonomy, a distinction is often performed among faults,
errors and failures. A failure is  defined  to  be  a  system
deviation from the correct/expected service; different failure
modes can be in principle be identified, corresponding to
different ways of deviating from correct behavior. An error is
a discrepancy between the intended behavior of a system
component and its actual behavior; so the difference between
error and failure stands in the boundaries on which they are
defined (whole system for failures, single components for
errors). Finally, a fault is a defect in the system, leading to a
failure (a cause of a failure). These concepts are often
assembled in the so called fault-error-failure chain: a fault,
when activated, can lead to an error (which is an invalid
state) and the invalid state generated by an error may lead to
another error or a failure (which is an observable deviation
from the specified behavior at the system boundary).

Reliability (or availability) techniques dealing with the
above notions are usually model-based techniques. Model
types can be roughly categorized as follows:

Combinatorial models
State-space models
Local dependency models

Combinatorial models have poor modeling power matched
with high analytical tractability and assume that components
are statistically independent; example of such models are
fault tree (FT)[24] and reliability block diagrams (RBD)[25].

State-space models rely on the specification of the whole set
of the possible system states and of the possible transitions
among them, for these reasons they suffer of the state space
explosion problem; examples are Markov chains (either
DTMC or CTMC)[25] and Petri nets (PN)[16].

More interesting for the aims of this tutorial, are the local
dependency models, where component dependencies are
specified only at specific places (i.e. locally). One of the first
attempt to exploit local dependencies was the definition of an
extended version of the FT language, namely Dynamic Fault

Tree (DFT)[9]. In a DFT, in addition to standard FT gates,
special dynamic gates are introduced (see Fig. 1):

Fig. 1
Functional Dependency gate (FDEP) – given as input
events a trigger event T and a set of dependent events D1,
..., Dm, the dependent events are forced to occur when the
trigger event occurs;
Priority And gate (PAND) - given X1, ..., Xn as input
events and Y as output event, Y fails if all X1, ..., Xn have
occurred and only in a specified order.
Sequence Enforcing gate (SEQ) - given X1, ..., Xn as input
events and Y as output event, X1, ..., Xn are forced to occur
in a specified order; Y corresponds to the state of Xn
(actually, the gate can be modeled as a special case of the
next WSP gate).
Warm Spare gate (WSP) - this gate models the presence of
a set of warm spare components able to replace a main
component when it fails; warm spares can be in three
states: dormant (or stand-by), working, failed; the spare
failure rate changes depending on its current state: if the
failure rate of the spare is  in the working state,  is its
failure rate in the dormant state, with 0< <1;  is called
dormancy factor. The input events of this gate are the
events corresponding to the failure of the main component
and the events corresponding to the failure of the spares;
the output event occurs if the main component fails and
there are no available spares to replace it.
Due to dependencies, DFTs need state space analysis;

however, it can be limited to dynamic modules that can be
identified as sub-trees and separately solved through CTMC
[11] or GSPN [4]. The results of module analysis can then be
used as inputs for a standard FTA[10].

More recently, another set of formalisms based on local
dependencies that have received a lot of attention in the
reliability community is that of Probabilistic Graphical
Models (PGM), whose main representatives are Bayesian
Networks (BN)  and Dynamic Bayesian Networks (DBN).
Next section introduces the basics of such formalisms.

3. PROBABILISTIC GRAPHICAL MODELS: BAYESIAN
NETWORKS AND DYNAMIC BAYESIAN NETWORKS

Bayesian (or Belief) Networks (BN) are a widely used
formalism from AI (Artificial Intelligence) for representing
uncertain knowledge in probabilistic systems, applied to a
variety of real-world problems [20]. BN are defined by a
directed acyclic graph in which (discrete) random variables
are assigned to each node, together with the quantitative
conditional dependence on the parent nodes (Conditional
Probability Table or CPT). More formally, a BN is a pair
N<G,P> where:
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G is  a  DAG  whose  nodes X1,...Xn are a set of discrete
random  variables  and  where  an  edge  from X to Y means
that Y depends on X (e.g. X causes Y);
P is a probability distribution over X1,...Xn such that

n

i
iin XpaXXX

1
1 )](|Pr[],...Pr[  where pa(X) is the

set of parent nodes of X in the DAG G.
The advantage of the BN representation is that one can

get the joint probability of the variables of the model, by
specifying a set of conditional probabilities local to X and to
its parents (the CPT). Fig. 2 shows an example of a BN.

Fig. 2 (by H. Langseth)

If we indicate as nd(X) the set of non descendant nodes of X,
one basic assumption underlying the structure of a BN is that
a variable X is independent from other non descendant
variables, given its parents (written X  nd(X)\pa(X)|pa(X)).
Several other independence rules can be extracted by simply
looking at the structure of a BN, called d-separation rules
[20].

Concerning the quantitative aspects of a BN, several
probabilistic computations (called inferences) are possible,
given that a BN can be used to answer any probabilistic query
of the type Pr[Q|e], where e is an instantiation of any set of
variables in the net, called the evidence, and Q is  a  set  of
queried variables of interest. In  particular we can perform:

Predictive inference (Pr[effect|cause])
Diagnostic inference (Pr[cause|effect])
Combined inference (Pr[intermed|cause, effect])

An example of predictive inference on the model of Fig. 2 is
the computation of Pr[C|B=empty]; a diagnostic inference is
the computation of Pr[B|C=yes]; a combined inference is the
computation of Pr[E|B=empty,C=yes].

Different classes of algorithms have been developed for
performing inference on a BN, ranging from exact
computation schemes to approximated ones. In the first
category, the most important approach is based on the
compilation of the network structure into a secondary
structure called Junction (or Join) Tree (JT), derived from
structural manipulation of the original DAG. The advantage
is that inference can be performed by considering the joint
probabilities (called potentials)  of  specific  subsets  of  the  BN
variables, which are identified with the nodes of the JT

(called clusters)[13]. Approximated inference can be
performed by resorting to stochastic simulation techniques,
where net’s variables are sampled from the net’s distribution
according to specific orders, and posterior probabilities are
estimated on the basis of the performed simulation runs; the
most interesting techniques is perhaps the Gibbs sampling
applied to BN, providing fast convergence in many cases
[20].

However, BN are a static model, where time is not
explicitly taken into account. To address this point, an
extension to BN, called Dynamic Bayesian Network (DBN)
has been proposed as a different type of PGM.
A DBN [7,19] is a discrete time model which is essentially a
factorization, over a set of variables, of the states of a DTMC.
Fig. 3 reports a simple example of a DBN and related
notions.

Fig. 3
A time discretization step  is defined, and a Markovian

assumption allows to consider only 2 time slices (the so called
anterior and ulterior layers) for the model (which is then also
called 2TBN – 2-slices Temporal BN). In a canonical
representation, intra-slice dependencies of the anterior layer
can be omitted [2].

In a DBN several inference schemes can be performed as
reported in Fig. 4;

Fig. 4
filtering or monitoring corresponds to computing the
posterior probability of any network variable at time t, given
evidence up to time t; prediction corresponds to compute the
probability of any network variable at time t+  ( >0), given
evidence up to time t; smoothing corresponds to compute the
probability of any network variable instants in the past,
given evidence up to time t. While monitoring and prediction
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are related to on-line analysis of the system behavior,
smoothing is more related to ex-post diagnostic analysis,
reconstructing what may have occurred  in the past, given all
the information available at the current analysis time.
Also in the case of DBN, both exact as well as approximated
inference algorithms are available to perform the above tasks;
an exact  JT based algorithm called 1.5JT has been proposed
by Murphy [19], exploiting large part of the machinery used
by static JT algorithms. From the approximation side, a
parametric JT based algorithm called BK is due to Boyen and
Koller [Boi98]: the idea is to have a spectrum of
approximations depending on the input parameters, that are
set of nodes defining a partition of some net variables.
Murphy’s algorithm can be seem as a special case of BK,
when the input is the whole set to be partitioned (the so called
interface nodes). Again, stochastic simulation can also be
employed on DBN for inference: particularly relevant are the
algorithms called particle filtering, which avoid to consider
samples with very low probability to be propagated, by
resampling the population of samples according to their
probability at each time step [8].

4. FROM FAULT TREES TO BAYESIAN NETWORKS

A natural way of evaluating the potential impact of BN in
reliability analysis, is to relate BN modeling and analysis to
FTA. BN may improve both the modeling and the analysis
power wrt FT; concerning modeling, local conditional
dependencies, probabilistic gates, multi-state variables,
dependent failures and  uncertainty in model parameters can
be naturally addressed in the BN framework; from the
analysis point of view, any  probabilistic computation
involving the network variables can be addressed, both
predictive or diagnostic. Any FT can be transformed into a
corresponding BN, by creating a binary BN node for each
event in the FT, by setting the probability of BN root nodes
(corresponding to basic events in the FT) to the probability of
failure at the current analysis time t, and by building a CPT
(with 0-1 probability entries) for any BN node corresponding
to events which are output of a FT gate [1]. From the analysis
point of view, we can compute the system unreliability (or
unavailability if repair of components is allowed) by simply
computing the unconditioned probability of the FT’s Top
Event at the analysis time t (Prt[TE]); the criticality of each
component if a failure is observed can be obtained by
considering the posterior probability of each component C
given the system failure (Fussell-Vesely importance) at time
t, in other words Prt[C|TE]); finally, we can also compute the
criticality of sets of components at time t with queries like
Prt[C1, ...Ck|TE] and looking for the most probable
configurations of the components, leading to a failure (with a
somewhat generalization of the concept of cut-sets).

More importantly, the use of BN can greatly improve the
modeling power in at least the following directions: the use of
probabilistic gates, the use of multi-state variables, the
modeling of sequentially dependent faults and the
introduction of uncertainty on the model parameters. Fig. 5

shows how a probabilistic gate modeling imperfect coverage
can be modeled in a BN; value F stands for failed, W stands
for working and c is a coverage factor 1; when c=1
(perfect coverage) we get an AND gate, while if c=0 we get
an OR gate.

Fig. 5
Multi-state variables cannot be modeled in an ordinary

FT. Fig. 6 shows how they can be usefully exploited for
modeling sequentially dependent faults.

Fig. 6
In this example, a power supply device PS1, when

behaving in degraded mode Deg, may cause (with .9
probability) a fault on component CPUA.

Finally, uncertainty about some  model parameters can be
modeled by introducing new parameter nodes ,  in  order  to
quantify such uncertainty. In Fig. 7 it is shown how to model
the fact that we know that the actual failure rate of a
component, usually considered to be equal to , may also
have a decrease factor of .9 or an increase factor of 1.1.

Fig. 7
A more sophisticated solution can also be devised with

this approach, for example by considering a Beta or Gamma
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distribution for the values of the failure rates, with expected
value equal  (of course, the adopted Beta or Gamma
distribution should be adequately discretized on the parameter
nodes ).

5. FROM DYNAMIC FAULT TREES TO DYNAMIC
BAYESIAN NETWORKS

As we mentioned in section 2, DFT generalize FT by
allowing special dynamic dependencies, while still retaining
the binary nature of FT. As BN have been shown to improve
both the modeling and the analysis power of FT, so DBN can
be successfully employed to show the same with respect to
DFT. In particular, by following a modular approach, we can
convert  each  gate  of  a  DFT  into  a  DBN  fragment,  and  then
combine such fragments into the final DBN model[17]. Fig. 8
shows how FDEP, WSP and PAND gates can be translated
into DBN fragments.

Fig. 8
The combination of each fragment is then performed, at

the structural level, by merging common nodes from the
different parts. More attention has to be paid to the merging
of CPTs from different fragments on the same node; the well-
known notion of causal independence [12] can then be
exploited in this case, by considering the contribution of each
fragment as conditionally independent from the others and by
exploiting combination rules like the Noisy-Or[20,21] or the
MSP[18]. For example, in the MSP (Most Severe Prevailing)
interaction, the maximum of the entries to be combined is
assumed as a results. An example is provided in Fig. 9; here
it is modeled the integration of a fragment from an FDEP
gate with a fragment from a WSP gate, sharing a common
node B at the ulterior layer. The original CPTs as well as the
resulting one are also reported in the figure.
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Fig. 9

6. CASE STUDIES

In this tutorial, several case studies involving BN or DBN
inference will be presented. In the present notes, a couple of
them will be shortly described.

6.1 Cascading Failures

This case study is related to the analysis of a power grid
where failure may propagates over the lines[5]. The scenario
refers  to  the  IEEE118  Bus  Test  Case  [3]  whose  scheme  is
reported in Fig. 10. The main idea is to model the power grid
scheme into a series-parallel diagram (as shown in the lower
part of Fig. 10) and then to convert it into a DBN. In the
model 3-state variables are needed, since each line can be in
working, overloaded or outaged (failed) status. This means
that the series-parallel diagrams are a generalization of
standard boolean RBD with an ordering of the elements and
some specific propagation rules explained in the following.

The normal state is the initial one; an element e (that may
be a single line or a module composed by more lines)
becomes overloaded as a consequence of the outage of
another element

Fig. 10
e’ having some influence on e according  to  the  structure  of
the power grid; then, the overload may be propagated from e
to other elements. The outage state can be reached from both
the normal and the overload state: in the case of lines, such a
state transition is a stochastic event ruled by some probability
distribution (we assume an exponential distribution); the state
of a module instead, depends on the state of its internal
elements. Moreover, we assume that an outaged line can be
repaired; such an event is still stochastic and determines the
normal state of the line and possibly of other elements
influenced by the repaired line.

If we consider a module M composed by the elements
(lines or modules) e1,...,en, we suppose that different kinds of
dependency hold among e1,...,en:

(1) if any element (line or module) ei of  M  is
overloaded for any reason, then the overload has to

be propagated to the following element ei+1. If on
the contrary, ei is in the normal state, such state
has to be propagated to ei+1;

(2) if M is a series module, the direct consequence of
the outage of an element ei of M, is the propagation
of the normal state to ei+1 (ei+1 becomes isolated: it
cannot transport any power). The repair of an
element ei propagates the normal state to ei+1,...,en
because of (1). Finally, the series module M is in
the normal state if all the elements e1,...,en are
normal; M is in the outage state if at least one
element among e1,...,en is outaged; M is in the
overload state in any other case;

(3) if M is a parallel module, if at least one element
among e1,...,en is outaged, the overload state is
propagated to the other elements of M. If instead,
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no elements among e1,...,en are outaged as a
consequence of a repair, and M is not the following
element of an overloaded one, then the normal
state is propagated to e1 (and consequently to
e2,...,en as well). The parallel module M is in the
outage state if all the elements e1,y,en are outaged;
M is in the overload state if at least one element
among  e1,y,en is overloaded; M is in the normal
state in any other case.

Fig. 11 shows the possible state transitions by a line.

Fig. 11
Fig. 12 shows the DBN obtained by converting the series-

parallel diagram in the lower-right rectangle of Fig.12.

Fig. 12
In the example we consider exponentially distributed

failure rates: if  the line is not outaged, the outage rate can be
, or ; if the line is outaged, the repair rate is . The

choice of the outage rate depends on the state of the line in t:
if normal  then the rate is , if overloaded directly caused (in
t- ) by the overload of another element, then is , if
overloaded directly caused by the outage of another element,
then is  (with > >1). As an example the following Table
1 reports the CPT for the states outaged (failed) of line 5-4 of
Fig. 12.

Table 1
Notice that the entry indicated as “*” shows an impossible

case (line 5-4 overloaded and line 5-11 working), so the
actual CPT value in this entry is indifferent. CPT for other
states of line 5-4 are set similarly.

Quantitative results can then be obtained through standard
DBN  inference  as  discussed  in  previous  sections.   Fig.  13

reports some filtering results concerning a different part of
the power grid of  Fig.10 (i.e. lines relative to nodes 11, 12,
15 and 17); they show the probability of  overload and
outaged states of some lines and modules by considering the
following observations:

Fig. 13

6.2 FDIR for Autonomous Spacecrafts

The goal of this study (funded by European Space Agency
ESA/ESTEC under grant TEC-SWE/09259/YY) is the
development of a software architecture for FDIR analysis of
autonomous spacecrafts (e.g. Mars rovers), based on DBN
inference. Such architecture, called ARPHA (Anomaly
Resolution and Prognostic Health management for
Autonomy), has to distinguish between off-board and on-
board software, with emphasis on on-board software
capabilities. The choice has been to make an ex-novo
implementation of standard DBN inference algorithms (in
particular both 1.5JT and BK), by considering the JT as the
operational model to be available on-board for inference and
computation. On-board software ha to be able to....

However, the generation of the operational model has
been thought as supported, as much as possible, by means of
automatic translation from standard reliability modeling
languages; in particular, we developed an extended version of
DFT, able to take into account general stochastic
dependencies between system components, as well as the
possibility of modeling multi-state components,
environmental conditions and control actions[22,23]. From
this model a Dynamic Decision Network is derived and
subsequently transformed in a DBN for inference purposes.
The  JT  obtained  by  the  DBN  is  then  adopted  as  on-board
model.

DBN inference is used to support the following tasks:
diagnosis: identifying faults or anomalies in
system components at the current time, given a
stream of sensors observations
prognosis: predicting the future state of system
components (and so of the whole system), given
the sensor information up to the current time
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recovery: providing the suitable control actions
to an Autonomy Building Block in order to avoid
undesirable consequences; it can be a reactive
recovery (when the current state has been
recognized  as  failed)  or  a preventive recovery
(either if the current state is anomalous but not
failed yet, or if the current state is normal, but
prognosis identifies future problems)

As a benchmark, we identified the power management
subsystem of a Mars rover. In particular we studied how
to automatically switch the operating mode (normal,
energy-saving or stop), in order to control the battery
charge.  Fig.14  reports  a  fragment  of  the  DBN  used  for
this task. Selection of the best recovery action (the switch
to the most useful operating mode, represented by variable
Mode in this example) is performed by exploiting DBN
inference in order to compute the Expected Utility of each
possible action, and then selecting that providing the
maximum.

Fig. 14
This means that a utility table is associated with each

actions and variables of interests (e.g. BattCharge in the
example) and EU is computed by considering the posterior
probability of such variables [20]. Fig. 15 shows an example
of a battery charge profile and the corresponding recovery
actions adopted by ARPHA in response to such a profile.

Fig. 15

7. CONCLUSIONS AND OPEN ISSUES

Common aims and goals are currently being recognized by
researchers in classical reliability theory and in the BN
community; examples of fields of fruitful cooperation include
probabilistic inference for fault detection and identification,
monitoring, maintenance, and prediction. A lot of issues will
still remain open and need more investigation; among them
the use of continuous variables in BN models (hybrid BN)
and the introduction of continuous time models in PGM (e.g.
GCTBN [6]).
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