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PROBLEM STATEMENT
• WHAT?
� modern society distributed services 

(communication, power, 
transportation, …)

� increasing reliance on 
technological network systems.

� attention to reliability, 
availability, vulnerability, safety

� increased system complexity
� analysis by classical 

modelling tools difficult
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NETWORK RELIABILITY
• WHAT?
� Network reliability: source-target connectivity

cut(path) sets procedure �NP-hard

• HOW?
� Cellular Automata (CA)
� Monte Carlo sampling and simulation (MC)



OUTLINE

� Application to network connectivity

� Application to network reliability

� Basics of MC simulation

� Application to network availability



Application to network connectivity



Application: S-T connectedness problem

Node i = cell 
Ni = set of cells which provide input to i

(e.g. N4 = {1, 4, 5})
si = 1 when node i is operating ( active ) 

= 0 when not operating ( passive )
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(Rocco and Moreno, 2002)
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a cell is activated if there is at least one active cell in its neighbourhood



Application: S-T connectedness problem

BASIC ALGORITHM

1. t = 0

2. Set all the cells state values to 0 ( passive )

3. Set ( source activated )

4. t = t + 1

5. Update all cells states by means of CA rule

6. If                 , stop ( target activated ), else

7. If  t < m – 1, go to 4. Else 

8.                           ( target passive ): no connection path from S to T
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Application: S-T network evolution
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Application: CA evolution
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Application to network reliability



Application: S-T network reliability 

wji = 1, success  → pji

= 0, failure → 1-pij

])([...])([])([)1( rirqiqpipi wtswtswtsts ∧∨∨∧∨∧=+

iNrqp ∈,...,,

(Rocco and Moreno, 2002)

a cell is activated if there is at least one active cell in its 
neighbourhood and the connecting arc is functioning



Application: S-T network reliability 
BASIC ALGORITHM

1. n = 0

2. n = n + 1

3. Sample by MC a realization of the states of the connecting arcs w

4.Apply the previously illustrated CA algorithm for S-T connectedness, 
to evaluate if there is a path from S to T 

5. If a path exists, then update the counter of successful system states

6. If MC – iteration n < N, go to 2. Else

7. Network reliability = S-T successful paths/N



Identification of minimal cut sets 
by CA

(Zio, Librizzi and Sansavini, 2006)



Algorithm for MCS identification
CA: no S-T connection, CS*

comparison to 
CS< in archive

comparison to 
CS= in archive

counter CS< = CS< +1

counter CS= = CS= +1

CS* stored in archive

comparison to 
CS> in archive CS> eliminated

counter CS* = CS> + 1

CS* ⊂ CS<

CS* ≡ CS=

CS* ⊃ CS>

STOP



1. Keep an archive of CS

2. When a CS* configuration is sampled
• check whether another verified CS of � order 

⊂CS* is already stored; if not
• store the CS* and check if higher order ⊃ CS*

3. Update counter of occurrences for CS probability 
estimate

Algorithm for MCS identification



CA + MC for component 
importance measures

(Zio, Librizzi and Sansavini, 2006)



FV
ji

number of occurred CS containing ji
I

number of MC trials
≈

Fussell-Vesely importance measure FV
jiI

4. Update counter of occurrences of CS containing ji

contribute of arc ji to system failure in terms of partecipation to MCS 

Algorithm for importance measure



Case study



Literature case study: MCS identification

• all 111 MCS’s found
(107 trials, 192 s)

• Most important arcs: 2, 3, 4, 14, 16

� position with respect to target and source
� number of downstream arcs (e.g. arcs 1 and 4)
� failure probability

(Ramirez-Marquez and Coit, 2005)



Influence of failure probability on MCS 
criticality

49 10frequency −= ⋅43 10frequency −= ⋅

• More reliable components
near target

• Less reliable components
because of redundancies

MCS 20 { }14,16,20 MCS 7 { }2,3,5,11,12,13



BASICS OF MC simulation



BASICS OF MC Simulation
Procedures for sampling random numbers from 

given probability distributions

Sampling random walks of arcs failure/repair 
dynamics
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BASICS OF MC Simulation



Application to network availability

(Zio, Podofillini and Zille, 2005)



• Simulate arcs and nodes failure/repair dynamics (MC).
→ sample new configuration of the system after each 
transition of its elements (nodes and arcs).

• Check system state after each transition (success or failure).
→ check the connectedness between the source and the 
target nodes (CA).

Combine Cellular Automata and Monte Carlo Simulation.

Computation of network availability: MC 
simulation + CA



• The mission time is divided in time channel.

• Simulation of M histories of system life evolution.

• For each history : 
� Sample failure/repair transition times of each network 
element. 

System configuration in each time channel.

S-T connectedness by CA

Computation of network availability: 
Method

successful

failed
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Computation of network availability: 
Method
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Computation of network availability: 
Method
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Computation of network availability: 
Method



Computation of network availability: 
Method

• CA defines the system state after each transition : available or not.

• Collect the portion of time the system is available in the availability
counters of the corresponding time channels.

• At the end of the simulation, instantaneous availability of the system :
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1st case : only arcs can fail and be repaired, nodes are assumed
perfect.

2nd case : both nodes and arcs can fail and be repaired.

Computation of network availability: 
Litterature Case Study
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Computation of network availability: 
Results



CONCLUSIONS
CA+MC:

� Network connectivity

� Network reliability

� Network MCSs e IMs

� Network Availability



Binary networks Multi-state networks

Minimal cut sets (MCS) Multi-state minimal cut vectors 
(MMCV)

…

Two-terminal reliability (2TR) Multi-state two-terminal reliability 
at demand level d (M2TRd)

arc state 0

1
arc state

100%

90%

0%

mi

1

mi-1

OTHER DEVELOPMENTS

(Zio, Librizzi and Sansavini, 2006)



• High reliability  � few failure occurrences  � bad statistics

• Biasing  � failures favoured � variance reduction

Basic algorithm
i: arc,   j: state

1. Increase probabilities of arcs in low performing states, 
2. Sample network configuration from
3. Compare with network MMCVs (assumed given)
4. If failed configuration  � accumulate weight
5. Compute sample estimates of unreliability and 

variance

*
, ,i j i jp p→
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,i jp

Highly reliable networks - Biased Monte Carlo
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• Set threshold for biasing:

• Bias arc i with wi > wth so that wi � wth

thw k w= ⋅

Specific biasing
w = mean arc performance in the system

Method 1 Method 2

Biased Monte Carlo simulation



Biasing method 1 – all states below the 
nominal one

surplus probability



only failed states are forced 

Biasing method 2 – all states below the 
minimal in MMCV



• Need for efficient computational techniques for assessing 
highly reliable, multi-state networks � biased MC

Conclusions



• Extension CA+MC for application to Security 

• Development of new reliability indicators from 
the evaluation of the network topological 

properties (Complexity Science)

Current developments

Zio & Rocco, CNIP’ 06, 2006

Zio, 2006



MC biasing based on MMCVs, which are difficult to identify

Flow algorithms, CA (?)

Future developments



Cellular Automata (CA)
• WHAT?
� Mathematical models of complex dynamical systems
� Large number of identical processing elements with 

local interactions
� Parallel computation
• WHY?
� Development of computers and computation (von 

Neumann, 1948)
� Models of the dynamics of many real complex 

systems: e.g. fluids, molecular systems, economical 
systems, ecological systems



BASICS OF CA



BASICS OF CA

1. Spatially- and temporally-discrete
2. Local interaction
3. Parallel evolution



BASICS OF CA
1. Spatially- and temporally-discrete 

� Each cell of � is a finite automaton which assumes values 
in S≡{0,1,2,…,k-1}

� si(t)= state of the cell i (1D) at the discrete time t
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� ���� is homogeneous: all cells bear the same properties

� ���� = discrete lattice of cells (state space for CA dynamics)



� Ni = predefined local neighbourhood of cell i

� Cell i interacts only with the n cells in Ni
� Transition rule  

BASICS OF CA
2. Local interaction 

SSXXSXS
n

→
�������

...:φ
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BASICS OF CA
3. Parallel evolution 

� One evolution step of the CA is achieved after the 
simultaneous application of the rule φ to each cell in �



1D-CA Example: Addition modulo 2

�S≡{0,1}; k=2
�r=1
�1st order in time

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ){ }tststststststs iiiiiii 112112 ,,mod1 +−+− ⊕≡++=+



1D-CA Example: Addition modulo 2

010 1 1 1 1 110 0 0 0 0 0 0 0

01 0 0 1 1 001 0 1 0 1 1 1 11

Rule
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CA Behavioural classes

1. fixed points 
2. inhomogeneous configuration 

or cycles 
3. chaotic, aperiodic patterns
4. complex, localized, propagating 

structures

3) 4) 

1) 2) 



CA vs DE

�CA can be considered an alternative to DE

�Discretization for numerical solution of DE ~ local 
discrete dynamical system of CA

�DE can lead to analytic solutions in simple cases

�CA are more convenient for simulation

�HOWEVER: setting up a CA corresponding to a DE 
is a difficult problem �phenomenology



BASICS OF MC sampling



BASICS OF MC Sampling

Procedures for sampling random numbers from 
given probability distributions

Sampling realizations of arcs failure/success 
configurations

“Coin Toss”:
pji = probability of arc ji “success”
qji = probability of arc ji “failure”


