Propagazione di virus informatici in reti complesse

Michele Garetto

E-mail virus propagation

- The virus propagates as an attachment to e-mail messages
- Requires human assistance
 - random time elapses before the recipient reads the message
 - → the "click" probability
- The virus makes use of the recipient's address book to send copies of itself

E-mail virus propagation

- The virus propagates on the network graph induced by email address books:
 - Each node stands for an email address
 - Edges represents social or business relationships
- The resulting graph is expected to have "small world" and "scale-free" properties:
 - > small characteristic path length
 - → high clustering coefficient
 - > power-law degree distribution

Our work on e-mail viruses

- Static analysis: what is the final size of an infection outbreak? What is the probability of a large-scale epidemic?
 - → Percolation problem
- Dynamic analysis: how fast is the propagation of a virus in a network? What is the (average) number of infected hosts as a function of time?
 - → Interactive Markov Chains

M. Garetto, D. Towsley, W. Gong, <u>Modeling Malware Spreading</u> <u>Dynamics</u>, IEEE INFOCOM 2003, San Francisco, CA, April 2003

Introduction to graph percolation

- Consider a completely connected graph $G = \{V, E\}$
- Site percolation: mark each vertex with probability p
- Bond percolation: mark each edge with probability p
- For which values of p the resulting graph is still connected?
 - > percolation threshold
 - → phase transition

The "small-world" model of Watts and Strogatz

N = 24

S = 4

k = 3

A ring lattice with additional random shortcuts

Parameters:

N = number of nodes

5 = number of shortcuts
 (oh = shortcuts density)

Virus propagation on the small-world graph

= susceptible

= infected

= immune

Not all of the susceptible nodes receive a copy of the virus!

ite percolation problem

(node occupation probability = click probability)

Site percolation problem on the small world graph: exact asymptotic result

$$E[I_{\infty}] = \frac{c(1+q)}{1 - q - 2k\phi c(1+q)}$$

[Moore, Newman 2000]

$$q = 1 - (1 - c)^k$$

Scale-free networks

Power-law degree distribution

$$P(k) \sim k^{-\lambda}$$

 In case of random wiring, no percolation threshold exists when

$$2 < \lambda < 3$$

- Result holds also with connectivity correlations (assortative/disassortative mixing)
- In highly clustered networks?

Our work on e-mail viruses

- Static analysis: what is the final size of an infection outbreak? What is the probability of a large-scale epidemic?
 - → Percolation problem
- Dynamic analysis: how fast is the propagation of a virus in a network? What is the (average) number of infected hosts as a function of time?
 - → Interactive Markov Chains

The "Interactive Markov Chains" (IMC) Modeling Framework

Global network structure ... but locally a Markov chain

Each node is represented by a Markov chain, whose state transitions are influenced by the states of its neighbors

Computational complexity issue

The whole system evolves according to a global Markov chain G, whose state space dimension (#G) is equal to the product of the local chain dimensions (#L)

$$\#G = \#L^N$$

> The exact solution of the global Markov chain is feasible only for small systems

example:

- 20 nodes
- binary status (0 = not infected, 1 = infected)
- \rightarrow 2²⁰ states (~ 1 million)!

The Influence Model

First proposed by

C. Asavathiratham, "The influence model: a tractable representation for the dynamics of networked Markov chains," Ph.D. dissertation, EECS Dept., MIT, Oct 2000

■ Is a discrete-time Markov process, with state space dimension (#G) equal to the sum of local chain dimensions (#L)

$$\#G = N \cdot \#L$$

- It allows to consider very large systems. Example:
 - 100000 nodes
 - binary status (0 = not infected, 1 = infected)

 → 200000 states

The Influence Model

The Influence Model

At each time step, a node i is "influenced" by one of its neighbors j (or by itself) according to some probability $d_{i,j}$

- ightharpoonup The probabilities $d_{i,j}$ are the weights associated with incoming edges
- $\sum_{j} d_{i,j} = 1$
- > self-influence corresponds to self-loop
- The new state of ${\bf i}$ is determined by the state of the influencing node according to a transition matrix $A_{i,i}$

Propagation on the small world graph: the impact of topology

Transient analysis and percolation on power-law random graphs

10000 nodes

GLP algorithm (Bu 2002)

power-law node degree, small-world properties

One initially infected node with degree 10

m = initial connectivity of nodes added to the graph

Spectral methods

 The impact of network topology on the spread of epidemics can be predicted by looking at the eigenvalues and eigenvectors of the network adjacency matrix

Example: SIS model

A. Ganesh, L. Massoulié, D. Towsley, "The Effect of Network Topology on the Spread of Epidemics," *IEEE Infocom* 2005

Combining transient analysis and percolation on general topologies

➤ A simple upper bound of the probability to receive a copy of the virus (valid on general topologies):

$$P_{R_i}[\infty] = 1 - \prod_{j \in n_i} (1 - c_j)$$

> The probability not to receive a copy of the virus can be regarded as an initial immunization

$$P_{M_i}[0] = 1 - P_{R_i}[\infty]$$

Global upper bound for the infection process